DOI QR코드

DOI QR Code

Changes in phytoplankton size structure in the East Sea 2018-2020 due to marine environment change

해양환경 변화로 인한 2018~2020년 동해 식물플랑크톤 크기 구조 변화

  • Kyung Woo Park (National Institute of Fisheries Science, NIFS) ;
  • Hyun Ju Oh (National Institute of Fisheries Science, NIFS) ;
  • Jae Dong Hwang (National Institute of Fisheries Science, NIFS) ;
  • Su Yeon Moon (National Institute of Fisheries Science, NIFS) ;
  • Min Uk Lee (National Institute of Fisheries Science, NIFS) ;
  • Seok Hyun Youn (National Institute of Fisheries Science, NIFS)
  • 박경우 (국립수산과학원 기후변화연구과) ;
  • 오현주 (국립수산과학원 기후변화연구과) ;
  • 황재동 (국립수산과학원 기후변화연구과) ;
  • 문수연 (국립수산과학원 기후변화연구과) ;
  • 이민욱 (국립수산과학원 기후변화연구과) ;
  • 윤석현 (국립수산과학원 기후변화연구과)
  • Received : 2022.02.08
  • Accepted : 2022.03.02
  • Published : 2022.03.31

Abstract

We conducted a field survey from 2018 to 2020 to analyze the spatial distribution of phytoplankton communities at 13 stations in the East Sea. The diatom Chaetoceros curvisetus appeared as the dominant species in winter, and small flagellates less than 20 ㎛ prevailed in all seasons except winter. The seasonal average range of the micro (>20 ㎛), nano (20 ㎛≥Chl-a>3 ㎛), and picophytoplankton (≤3 ㎛) was 20.6-26.2%, 27.1-35.9%, and 40.8-49.0%, respectively. The composition ratio of nano and picophytoplankton was high at the surface mixed layer from spring to autumn when the water columns were strongly stratified. Especially, the stability of the water mass was increased when the summer surface water temperature was higher than that of the previous year. As a result, the nutrient inflow from the lower layer to the surface was reduced as the ocean stratification layer was strengthened. Therefore, the composition ratio of nano and picophytoplankton was the highest at 77.9% at the surface mixed layer. In conclusion, the structure of the phytoplankton community in the East Sea has been miniaturized, which is expected to form a complex microbial food web structure and lower the carbon transfer rate to the upper consumer stage.

동해 연근해 해역에서 식물플랑크톤 군집의 분포 특성을 파악하기 위해 2018년부터 2020년까지 계절적으로 13개 정점을 대상으로 조사를 실시하였다. 그 결과 동계에는 규조류인 Chaetoceros curvisetus가 최우점종으로 출현하고 있었으며, 동계를 제외한 전 계절에에 미동정 미소편모조류가 우점하는 것으로 나타났다. 식물플랑크톤의 크기별 구성에서도 연간 계절별 평균 범위는 소형 20.6~26.2%, 미소 27.1~35.9%와 초미소 40.8~49.9%를 나타내었다. 성층이 형성되는 시기인 춘계, 하계 및 추계 표층 혼합층 내에서 미소와 초미소식물플랑크톤의 구성비가 높았다. 특히, 하계 표층 수온 상승이 예년에 비해 높아짐에 따라 수괴 안정도는 증가하고 있었으며 이로 인하여 성층이 강화됨에 따라 저층으로부터 표층으로의 영양염 유입이 감소하여 표층 혼합층 내 미소와 초미소식물플랑크톤의 구성비가 77.9%로 가장 높은 특징을 나타내었다. 동해 연근해 해역의 식물플랑크톤 군집의 크기 구조는 상당히 소형화가 진행되었으며, 이로 인하여 복잡한 미세먹이망 구조를 형성하며 상위 소비자 단계로의 총 탄소량 전달을 낮춰 전체적인 생산력은 낮아질 것으로 판단된다.

Keywords

Acknowledgement

본 논문을 세밀하게 검토해 주신 심사위원들께 깊이 감사드립니다. 본 연구사업은 국립수산과학원 수산과학원연구사업 '한국근해 해양변동 모니터링 및 생태계 특성연구' (R2022055)의 지원으로 수행되었습니다. 현장자료 확보를 위해 수고하였던 정선해양조사 관련 연구원들과 탐구 3호 승조원들께 감사의 말씀을 드립니다.

References

  1. Agawin NSR, CM Duarte and S Agusti. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45:591-600. https://doi.org/10.4319/lo.2000.45.3.0591
  2. Arrigo KR and GLV Dijken. 2015. Continued increases in Arctic Ocean primary productivity. Prog. Oceanogr. 136:60-70. https://doi.org/10.1016/j.pocean.2015.05.002
  3. Baek SH and YB Kim. 2018. Influences of coastal upwelling and time lag on primary production in offshore waters of Ulleungdo-Dokdo during spring 2016. Korean J. Environ. Biol. 36:156-164. https://doi.org/10.11626/KJEB.2018.36.2.156
  4. Baek SH, MJ Lee and YB Kim. 2018. Spring phytoplankton community response to an episodic windstorm event in oligotrophic waters offshore from the Ulleungdo and Dokdo islands, Korea. J. Sea Res. 132:1-14. https://doi.org/10.1016/j.seares.2017.11.003
  5. Byrne RH, S Mecking, RA Feely and X Liu. 2010. Direct observations of basin-wide acidification of the North Pacific Ocean. Geophys. Res. Lett. 37:L02601.
  6. Chen YL, H Lu, F Shiah, G Gong, K Liu and J Kanda. 1999. New production and f-ratio on the continental shelf of the East China Sea: comparisons between nitrate inputs from the subsurface Kuroshio Current and the Changjiang River. Estuar. Coast. Shelf Sci. 48:59-75. https://doi.org/10.1006/ecss.1999.0404
  7. Choi HC, YS Kang and IS Jeon. 2004. Phytoplankton community in adjacent waters of Ulchin nuclear power plant. Korean J. Environ. Biol. 22:426-437.
  8. Decembrini F, C Caroppo and M Azzaro. 2009. Size structure and production of phytoplankton community and carbon pathways channeling in the southern Tyrrhenian Sea(western Mediterranean). Deep-Sea Res. Part II-Top. Stud. Oceanogr. 56:687-699. https://doi.org/10.1016/j.dsr2.2008.07.022
  9. Dortch Q and TE Whitledge. 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont. Shelf Res. 12:1293-1309. https://doi.org/10.1016/0278-4343(92)90065-R
  10. Falkowski PG and JA Raven. 1997. Aquatic Photosynthesis, 2nd ed. Princeton University Press. Princeton, NJ.
  11. Han IS and JS Lee. 2020. Change the annual amplitude of sea surface temperature due to climate change in a recent decade around the Korean Peninsula. J. Korean Soc. Mar. Environ. Saf. 26:233-241. https://doi.org/10.7837/kosomes.2020.26.3.233
  12. Hays GC, JR Anthony and R Carol. 2005. Climate change and marine plankton. Trends Ecol. Evol. 20:337-344. https://doi.org/10.1016/j.tree.2005.03.004
  13. Hyun JH, DS Kim, CW Shin, JG Noh, EJ Yang, JS Mok, SH Kim, HC Kim and SH Yoo. 2009. Enhanced phytoplankton and bacterioplankton production coupled to coastal upwelling and an anticyclonic eddy in the Ulleung Basin, East Sea. Aquat. Microb. Ecol. 54:45-54.
  14. IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK and LA Meyer (eds.)]. Intergovernmental Panel on Climate Change. Geneva.
  15. Joo HT, JW Park, S Son, JH Noh, JY Jeong, JH Kwak, S Saux-Picart, JH Choi, CK Kang and SH Lee. 2014. Long-term annual primary production in the Ulleung Basin as a biological hot spot in the East/Japan Sea. J. Geophys. Res.-Oceans 119:3002-3011.
  16. Joo HT, SH Son, JW Park, JJ Kang, JY Jeong, CI Lee, CK Kang and SH Lee. 2016. Long-term pattern of primary productivity in the East/Japan Sea based on ocean color data derived from MODIS-aqua. Remote Sens. 8:25.
  17. Joo HT, SH Son, JW Park, JJ Kang, JY Jeong, JI Kwon, CK Kang and SH Lee. 2017. Small phytoplankton contribution to the total primary production in the highly productive Ulleung Basin in the East/Japan Sea. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 143:54-61. https://doi.org/10.1016/j.dsr2.2017.06.007
  18. Justic D, NN Rabalais, RE Turner and Q Dortch. 1995. Changes in nutrient structure of river-dominated coastal water: Stoichiometric nutrient balance and its consequences. Estuar. Coast. Shelf Sci. 40:339-356. https://doi.org/10.1016/S0272-7714(05)80014-9
  19. Kang DJ, S Park, YG Kim, K Kim and KR Kim. 2003. A moving-boundary box model (MBBM) for oceans in change: an application to the East/Japan Sea. Geophys. Res. Lett. 30:1299.
  20. Kang YS and JK Choi. 2002. Ecological characteristics of phytoplankton communities in the coastal waters of Gori, Wolseong, Uljin and Younggwang. II. Distributions of standing crops and environmental variables (1992-1996). Algae 16:85-111.
  21. Kang YS, HC Choi, JW Lim, IS Jeon and JH Seo. 2005. Dynamics of the phytoplankton community in the coastal waters of Chuksan harbor, East Sea. Algae 20:345-352. https://doi.org/10.4490/ALGAE.2005.20.4.345
  22. Kang YS, HC Choi, JH Noh, JK Choi and IS Jeon. 2006. Seasonal variation of phytoplankton community structure in northeastern coastal waters off the Korean Peninsula. Algae 21:83-90. https://doi.org/10.4490/ALGAE.2006.21.1.083
  23. Kim AR, SH Youn, MH Chung, SC Yoon and CH Moon. 2014. The influences of coastal upwelling on phytoplankton community in the southern part of East Sea, Korea. J. Korean Soc. Oceanogr. 16:287-301.
  24. Kim K, KR Kim, DH Min, Y Volkov, JH Yoon and M Takematsu. 2001. Warming and structural changes in the East (Japan) Sea: a clue to future changes in global oceans? Geophys. Res. Lett. 28:3293-3296. https://doi.org/10.1029/2001GL013078
  25. Knauss JA. 2015. Introduction to Physical Oceanography (2nd Edition). Waveland Press Inc. Long Grove, IL.
  26. Kwak JH, SH Lee, J Hwan, YS Suh, HJ Park, KI Chang, KR Kim and CK Kang. 2014. Summer primary productivity and phytoplankton community composition driven by different hydrographic structures in the East/Japan Sea and the Western Subarctic Pacific. J. Geophys. Res.-Oceans 119:4505-4519. https://doi.org/10.1002/2014JC009874
  27. Kwon HK, SG Jeon and SJ Oh. 2016. Effects of dissolved organic nitrogen on the growth of dominant phytoplankton in the southwestern part of East Sea in the late summer. Korean Soc. Mar. Environ. Saf. 22:42-51. https://doi.org/10.7837/kosomes.2016.22.1.042
  28. Kwon OY and JH Kang. 2013. Seasonal variation of physicochemical factors and size-fractionated phytoplankton biomass at Ulsan seaport of East Sea in Korea. J. Korea Acad.-Indust. Coop. Soc. 14:6008-6014.
  29. Lee JB, MS Han and HS Yang. 1998. The ecosystem of the Southern Coastal Waters of the East Sea. I Phytoplankton community structure and primary productivity in September, 1994. J. Korean Fish. Soc. 31:45-55.
  30. Lee JY and M Chang. 2014. Size dependent analysis of phytoplankton community structure during low water temperature periods in the coastal waters of East Sea, Korea. Korean J. Environ. Biol. 32:168-175. https://doi.org/10.11626/KJEB.2014.32.3.168
  31. Lee MJ, YB Kim, JH Kang, CH Park and SH Baek. 2020. Seasonal distribution of phytoplankton and environmental factors in the offshore waters of Dokdo: Comparison between 2018 and 2019. Korean J. Environ. Biol. 38:47-60. https://doi.org/10.11626/KJEB.2020.38.1.047
  32. Lee SH, S Son, HU Dahms, JW Park, JH Lim, JH Noh, JI Kwon, H Joo, JY Jeong and CK Kang. 2014. Decadal changes of phytoplankton Chl-a in the East Sea/Sea of Japan. Oceanology 6:771-779.
  33. Lee SH, HT Joo, JH Lee, JH Lee, JJ Kang, HW Lee, DB Lee and CK Kang. 2017. Carbon uptake rates of phytoplankton in the Northern East/Japan Sea. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 143:45-53. https://doi.org/10.1016/j.dsr2.2017.04.009
  34. Litchman E, CA Klausmeier, OM Schofield and PG Falkowski. 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol. Lett. 10:1170-1181. https://doi.org/10.1111/j.1461-0248.2007.01117.x
  35. Liu X, M Wang and W Shi. 2009. A study of a Hurricane Katrina-induced phytoplankton bloom using satellite observations and model simulations. J. Geophys. Res. 114:C03023.
  36. Longhurst A. 2010. Ecological Geography of the Sea. Academic Press. London.
  37. Magazzu G and F Decembrini. 1995. Primary production, biomass and abundance of phototrophic picoplankton in the Mediterranean Sea: a review. Aquat. Microb. Ecol. 9:97-104. https://doi.org/10.3354/ame009097
  38. Maranon E, PM Holligan, R Barciela, N Gonzalez, B Mourino, MJ Pazo and M Varela. 2001. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Prog. Ser. 216:43-56. https://doi.org/10.3354/meps216043
  39. Millero FJ and A Poisson. 1981. International one-atmosphere equation of state of seawater. Deep-Sea Res. A 28:625-629. https://doi.org/10.1016/0198-0149(81)90122-9
  40. Min HS and CH Kim. 2006. Interannual variability and long-term trend of coastal sea surface temperature in Korea. Ocean Polar Res. 28:415-423.
  41. Moran XAG, I Taupier-Letage, E Vazquez-Dominguez, S Ruiz, L Arin, P Raimbault and M Estrada. 2001. Physical-biological coupling in the Algerian Basin(SW Mediterranean): Influence of mesoscale instabilities on the biomass and production of phytoplankton and bacterioplankton. Deep-Sea Res. Part I-Oceanogr. Res. Pap. 48:405-437. https://doi.org/10.1016/S0967-0637(00)00042-X
  42. Ning X, F Chai, H Xue, Y Cai, C Liu and J Shi. 2005. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. J. Geophys. Res. 109:C10005.
  43. Parsons TR, Y Maita and CM Lalli. 1984. A Manual of Biological and Chemical Methods for Seawater Analysis. Pergamon Press. Oxford.
  44. Raven JR. 1998. The twelfth tansley lecture. Small is beautiful: the picophytoplankton. Funct. Ecol. 12:503-513. https://doi.org/10.1046/j.1365-2435.1998.00233.x
  45. Revelante N and M Gilmartin. 1995. The relative increase of larger phytoplankton in a subsurface chlorophyll maximum of the northern Adriatic Sea. J. Plankton Res. 17:1535-1562. https://doi.org/10.1093/plankt/17.7.1535
  46. Richardson AJ. 2008. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 65:279-295. https://doi.org/10.1093/icesjms/fsn028
  47. Riegman R, BR Kuipers, AAM Noordeloos and HJ Witte. 1993. Size-differential control of phytoplankton and the structure of plankton communities. Neth. J. Sea Res. 31:255-265. https://doi.org/10.1016/0077-7579(93)90026-O
  48. Round FE, RM Crawfor and DG Mann. 1990. The Diatoms. Cambridge University Press. Cambridge.
  49. Sabine CL, RA Feely, N Gruber, RM Key, K Lee, JL Bullister, R Wanninkhof, CS Wong, DWR Wallace, B Tilbrook, FJ Millero, TH Peng, A Kozyr, T Ono and AF Rios. 2004. The oceanic sink for anthropogenic CO2. Science 305:367-371. https://doi.org/10.1126/science.1097403
  50. Seong KT, JD Hwang, IS Han, WJ Go, YS Suh and JY Lee. 2010. Characteristic for long-term trends of temperature in the Korean Waters. J. Korean Soc. Mar. Environ. Saf. 16:353-360.
  51. Shim JH, HG Yeo and YK Shin. 1991a. Ecological effect of thermal effluent in the Korean coastal waters I. Significance of autotrophic nano and picoplankton in adjacent waters of Kori nuclear power plant. J. Oceanol. Soc. Korea 26:77-82.
  52. Shim JH, HG Yeo and JG Park. 1991b. Primary production system in the southern waters of the east Sea, Korea I. Biomass and productivity. J. Oceanol. Soc. Korea 27:91-100.
  53. Shim JH. 1994. Flora and Fauna of Korea: vol. 34. Marine Phytoplankton. Ministry of Education. Sejong, Korea.
  54. Shim JH, HG Yeo and JG Park. 1995. Primary production system in the Southern Waters of the East Sea, Korea. II. The structure of phytoplankton community. J. Korean Soc. Mar. Environ. Saf. 30:163-169.
  55. Shim JM, KY Kwon, SW Kim and BS Yoon. 2015. Seasonal change of phytoplankton dominant species based on water mass in the coastal areas of the East Sea. J. Korean Soc. Mar. Environ. Saf. 21:473-483.
  56. Smayda TJ. 1978. Biogeographical meaning indicators. pp. 225-229. In: Phytoplankton Manual(Sournia A, ed.). United Nations Educational, Scientific, and Cultural Organization. Paris.
  57. Son YB, JH Ryu, JH Noh, SJ Ju and SH Kim. 2012. Climatological variability of satellite-derived sea surface temperature and chlorophyll in the South Sea of Korea and East China Sea. Ocean Polar Res. 34:201-218. https://doi.org/10.4217/OPR.2012.34.2.201
  58. Tomas CR. 1997. Identifying Marine Phytoplankton. Academic Press Inc. Cambridge, MA. pp. 1-858.
  59. Wang BD, XL Wang and R Zhan. 2003. Nutrient conditions in the Yellow Sea and the East China Sea. Estuar. Coast. Shelf Sci. 58:127-136. https://doi.org/10.1016/S0272-7714(03)00067-2
  60. Wassmann P, CM Duarte, S Agusti and MK Sejr. 2011. Footprints of climate change in the Arctic marine ecosystem. Glob. Change Biol. 17:1235-1249. https://doi.org/10.1111/j.1365-2486.2010.02311.x
  61. Wilson WD. 1960. Equation for the speed of sound in sea water. J. Acoust. Soc. Am. 32:1357.
  62. Yoder JA and MA Kennelly. 2003. Seasonal and ENSO variability in global ocean phytoplankton Chl-a derived from 4 years of Sea WiFS measurements. Glob. Biogeochem. Cy. 17:1112.
  63. Yoo SJ and JS Park. 2009. Why is the southwest the most productive region of the East Sea/Sea of Japan? J. Mar. Syst. 78:301-315. https://doi.org/10.1016/j.jmarsys.2009.02.014
  64. Yoon SC, SH Youn, MJ Shim and YY Yoon. 2017. Characteristics and variation trend of water mass in offshore of the east coast of Korea during last 10 years. J. Korean Soc. Mar. Environ. Energy 20:193-199. https://doi.org/10.7846/JKOSMEE.2017.20.4.193
  65. Yoon YH. 2016. Spatio-temporal Fluctuation of phytoplankton size fractionation in the Uljin marine ranching area (UMRA), East Sea of Korea. Korean J. Environ. Biol. 34:151-160. https://doi.org/10.11626/KJEB.2016.34.3.151
  66. Yoon YY, SJ Jung and SC Yoon. 2007. Characteristics and long term variation trend of water mass in the coastal part of East Sea, Korea. J. Korean Soc. Mar. Envrion. Energy 10:59-65.
  67. Zhou MJ, ZL Shen and RC Yu. 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Changjiang) River. Cont. Shelf Res. 28:1483-1489. https://doi.org/10.1016/j.csr.2007.02.009
  68. Zohary T, S Brenner, MD Krom, DL Angel, N Kress, WKW Li, A Neori and YZ Yacobi. 1998. Buildup of microbial biomass during deep winter mixing in a Mediterranean warm-core eddy. Mar. Ecol. Prog. Ser. 167:47-57. https://doi.org/10.3354/meps167047