사물 융합 태양전지 기술 및 전망

  • 임동찬 (한국재료연구원 나노혁신연구센터, 나노표면재료연구본부 에너지전자재료연구실) ;
  • 김소연 (한국재료연구원 나노표면재료연구본부 에너지전자재료연구실) ;
  • 무하마드 자한다 (한국재료연구원 나노표면재료연구본부 에너지전자재료연구실)
  • Published : 2022.04.30

Abstract

전 세계적으로 탄소중립에 대한 중요도가 증가하면서 국내에서도 이를 위한 그린뉴딜 정책이 발표되었다. 태양전지는 탄소중립 실현을 위한 중요한 신재생에너지 중의 하나이며, 최근에는 실외 거치형 발전 시스템을 넘어 건축 창호 및 외벽, 자동차 선루프, IoT 센서 구동용 전원 등 다양한 분야에서 제품들과의 융합화를 위한 소재/시스템 기술이 개발되고 있다. 본 원고에서는 유기태양전지를 활용한 Product integrated 태양전지 소재 및 응용 기술에 대해서 살펴보고자 한다. 특히, 실내 조명을 이용한 유기태양전지 기술에 대해 자세히 논의하고자 한다.

Keywords

Acknowledgement

This research was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP, No. 2018201010636A).

References

  1. 산업통산자원부, 2020, 보도자료 "탄소중립 사회를 향한 그린뉴딜 첫걸음".
  2. 아시아경제, 2020, 보도자료 "발전량 못따라가는 태양광...'그린뉴딜' 먹구름".
  3. W. K. Metzger 외 15인, 2019, Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells.
  4. Alessia Le Donne 외 2인, 2019, New Earth-Abundant Thin Film Solar Cells Based on Chalcogenides.
  5. StartUs insights, 2020, 보도자료, "4 Top Thin-Film Solar Cell Startups"
  6. Pengqing Bi 외 10인, 2021, Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency.
  7. Zhong Zheng 외 8인, 2022, Tandem Organic Solar Cell with 20.2% Efficiency.
  8. n-tech research report, 2016, "Organic Photovoltaic Markets 2016-2025"
  9. Christie L. Cutting 외 2인, 2016, Indoor light recycling: a new home for organic photovoltaics.
  10. Ian Mathews 외 3인, 2019, Technology and Market Perspective for Indoor Photovoltaic Cells.
  11. Junjiang Wu 외 5인, 2021, Towards a bright future: The versatile applications of organic solar cells.
  12. Hwa Sook Ryu 외 4인, 2020, Recent progress in indoor organic photovoltaics.
  13. Pengqing Bi 외 1인, 2018, Versatile Ternary Approach for Novel Organic Solar Cells: A Review.
  14. Luyao Lu 외 4인, 2014, Ternary blend polymer solar cells with enhanced power conversion efficiency.
  15. Runnan Yu 외 2인, 2018, Recent Progress in Ternary Organic Solar Cells Based on Nonfullerene Acceptors.
  16. Wanning Li 외 5인, 2018, A High-Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push-Pull Effect of the Nonfullerene Acceptor.
  17. Myung Hyun Ann 외 9인, 2020, Device design rules and operation principles of high-power perovskite solar cells for indoor applications.
  18. Huiqiong Zhou 외 7인, 2013, High-Efficiency Polymer Solar Cells Enhanced by Solvent Treatment.
  19. Jong-Hoon Lee 외 7인, 2018, Reinforcing the Built-In Field for Efficient Charge Collection in Polymer Solar Cells.
  20. Hin-Lap Yip 외 1인, 2012, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells.
  21. Alan J. Heeger, 2013, 25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation.
  22. Stephan van Reenen 외 5인, 2014, Origin of Work Function Modification by Ionic and Amine-Based Interface Layers.
  23. Ping Li 외 11인, 2014, High-efficiency inverted polymer solar cells controlled by the thickness of polyethylenimine ethoxylated (PEIE) interfacial layers.
  24. Man Ling Jiang 외 6인, 2019, High-Performance Organic Dyes with Electron-Deficient Quinoxalinoid Heterocycles for Dye-Sensitized Solar Cells under One Sun and Indoor Light.
  25. Muhammad Jahandar 외 2인, 2021, Indoor Organic Photovoltaics for Self-Sustaining IoT Devices: Progress, Challenges and Practicalization.