DOI QR코드

DOI QR Code

Evaluation of the contamination Level of Inland Pollution Sources Flowing into Taeanhaean National Park in Summer and Fall (2017-2018)

태안해안국립공원 연안으로 유입되는 하계-추계 육상오염원의 오염도 평가(2017~2018)

  • Hwang, Da Hye (Ocean Research Center, National Park Research Institute) ;
  • Kim, Jin Hyun (Ocean Research Center, National Park Research Institute) ;
  • Jang, Seong Geon (Ocean Research Center, National Park Research Institute) ;
  • Jeong, Won ok (Ocean Research Center, National Park Research Institute) ;
  • Jeong, Byungkwan (Ocean Research Center, National Park Research Institute)
  • 황다혜 (국립공원연구원 해양연구센터) ;
  • 김진현 (국립공원연구원 해양연구센터) ;
  • 장성건 (국립공원연구원 해양연구센터) ;
  • 정원옥 (국립공원연구원 해양연구센터) ;
  • 정병관 (국립공원연구원 해양연구센터)
  • Received : 2022.04.13
  • Accepted : 2022.06.21
  • Published : 2022.06.30

Abstract

This study evaluated the contamination levels of inland pollution sources flowing into Taeanhaean National Park. The nutritional status of influents was assessed by analyzing water quality and trophic status index (TRIX) at 52 stations, and the contamination levels of sediments were evaluated by analyzing eutrophication cleanup index (CIET) and heavy metals at 36 stations. The results of the TRIX analysis showed that 26 of the 52 stations had influents with a TRIX value of 6-10 (poor water quality/very high trophic level), indicating atrocious water quality and high eutrophication levels. The results of the CIET analysis showed that 4 out of the 36 stations were highly contaminated with organic matter. Analysis of heavy metals showed that the copper (Cu) and zinc (Zn) levels exceeded the threshold effects level (TEL) and probable effects levels (PEL) at several stations. In addition, the arsenic (As) level exceeded the threshold effects level at one station, and the levels of the other heavy metals (Cd, Cr6+, Ni, Pb, and Hg) were lower. Most inland pollution sources have been identified as small-scale, but long-term and continuous exposure can negatively affect the marine ecosystem; therefore, it necessary to prepare inland pollution source management standards and measures suitable for the characteristics of the coastal area.

Keywords

Acknowledgement

본 연구는 국립공원연구원에서 수행한 「태안해안국립공원 해양환경변화 측정망」 사업의 육상오염원 현황조사 (2017~2018년)의 결과입니다.

References

  1. Aguiar, V. M. d. C., Neto, J. A. B., Rangel, C. M., 2011, Eutrophication and hypoxia in four streams discharging in Guanabara Bay, RJ, Brazil, a case study, Mar. Pollut. Bull., 62, 1915-1919. https://doi.org/10.1016/j.marpolbul.2011.04.035
  2. Aizdaicher, N. A., Markina, Z. V., 2010, The effect of decrease in salinity on the dynamics of abundance and the cell size of Corethron Hystrix (Bacillariophyta) in laboratory culture, Ocean Sci. J., 45, 1-5. https://doi.org/10.1007/s12601-010-0001-8
  3. Caron, D. A., 1991, Evolving role of protozoa in aquatic nutrient cycles. In: Protozoa and their role in marine processes, Springer, Berlin Heidelberg, 387-415.
  4. Dauvin, J. C., Alizier, S., Vallet, C., Ruellet, T., 2010, Does the Port 2000 harbour construction have an effect on the Seine estuary suprabenthic community?, Estuar. Coast. Shelf Sci., 86, 42-50. https://doi.org/10.1016/j.ecss.2009.10.005
  5. Dauvin, J. C., Desroy, N., Janson, A. L., Vallet, C., Duhamel, S., 2006, Recent changes in estuarine benthic and suprabenthic communities resulting from the development of harbour infrastructure, Mar. Pollut. Bull., 53, 80-90. https://doi.org/10.1016/j.marpolbul.2005.09.020
  6. Ha, K. S., Yoo, H. D., Shim, K. B., Kim, J. H., Lee, T. S., Kim, P. H., Ju, J. Y., Lee, H. J., 2011, Evaluation of the influence of inland pollution sources on shellfish growing areas after rainfall events in Geoje Bay, Korea, Korean J. Fish. Aquat. Sci., 44, 612-621. https://doi.org/10.5657/KFAS.2011.0612
  7. Harrison, P. J., Piontkovski, S., Al-Hashmi, K., 2017, Understanding how physical-biological coupling influences harmful algal blooms, low oxygen and fish kills in the Sea of Oman and the Western Arabian Sea, Mar. Pollut. Bull., 114, 25-34. https://doi.org/10.1016/j.marpolbul.2016.11.008
  8. He, B., Dai, M., Zhai, W., Guo, X., Wang, L., 2014, Hypoxia in the upper reaches of the Pearl River Estuary and its maintenance mechanisms: A synthesis based on multiple year observations during 2000-2008, Mar. Chem., 167, 13-24. https://doi.org/10.1016/j.marchem.2014.07.003
  9. Heller, D., Gill, O. N., Raynham, E., Kirkland, T., Zadick, P. M., Stanwell-Smith, R., 1986, An Outbreak of gastrointestinal illness associated with consumption of raw depurated oysters, Br. Med. J., 292, 1726. https://doi.org/10.1136/bmj.292.6537.1726
  10. Hunter, C., Perkins, J., Tranter, J., Gunn, J., 1999, Agricultural land-use effects on the indicator bacterial quality of an upland stream in the Derbyshire peak district in the U.K, Water Res., 33, 3577-3586. https://doi.org/10.1016/S0043-1354(99)00083-4
  11. Hyun, S., Lee, T., Choi, J. S., Choi, D. L., Woo, H. J., 2003, Geochemical characteristics and heavy metal pollutions in the surface sediments of Gwangyang and Yeosu Bay, south coast of Korea, The Sea, 8, 380-391.
  12. Jonas, R. B., 1997, Bacteria, dissolved organics and oxygen consumption in salinity stratified Chesapeake Bay, an anoxia paradigm, Am. Zool., 37, 612-620. https://doi.org/10.1093/icb/37.6.612
  13. Kim, P. J., Shon, S. G., Park, S. Y., Kim, S. S., Jang, S. J., Jeon, S. B., Ju, J. S., 2012, Biogeochemistry of metal and nonmetal elements in the surface sediment of the Gamak Bay, Korean Soc. Mar. Environ. Saf., 18, 67-83. https://doi.org/10.7837/kosomes.2012.18.2.067
  14. Landsberg, J. H., 2002, The effects of harmful algal blooms on aquatic organisms, Rev. Fish. Sci., 10, 113-390. https://doi.org/10.1080/20026491051695
  15. Lee, D., Park, G., Lee, C., Shin, Y., 2017, Assessment of ecosystem health during the freshwater discharge in the Youngsan River estuary, Korean J. Ecol. Environ., 50, 46-56. https://doi.org/10.11614/KSL.2017.50.1.046
  16. Lee, D. S., Han, S. J., 1978, The contents of heavy metals in sediments from the southeastern coastal area of Korea, The Sea, 13, 11-16.
  17. Lehrter, J. C., 2008, Regulation of eutrophication susceptibility in oligohaline regions of a northern Gulf of Mexico estuary, Mobile Bay, Alabama, Mar. Pollut. Bull., 56, 1446-1460. https://doi.org/10.1016/j.marpolbul.2008.04.047
  18. Mallin, M. A., Cahoon, L. B., McIver, M. R., Parsons, D. C., Christopher Shank, G., 1999, Alternation of factors limiting phytoplankton production in the Cape Fear River estuary, Estuaries, 22, 825-836. https://doi.org/10.2307/1353064
  19. Mallin, M. A., Ensign, S. H., McIver, M. R., Shank, G. C., Fowler, P. K., 2001, Demographic, landscape, and meteorological factors controlling the microbial pollution of coastal waters, Hydrobiologia, 460, 185-193. https://doi.org/10.1023/A:1013169401211
  20. Ministry of Oceans and Fisheries (MOF), 2018, Regulations on the scope of investigation, purification, restoration, etc. of marine pollutant sediment, Marine environment standard 2018-15.
  21. Murrell, M. C., Hagy, J. D., Lores, E. M., Greene, R. M., 2007, Phytoplankton production and nutrient distributions in a subtropical estuary: importance of freshwater flow, Estuaries Coast., 30, 390-402. https://doi.org/10.1007/BF02819386
  22. National Institute of Fisheries Science (NIFS), 2021, Marine Standard Method, in Korea.
  23. Paik, S. G., Yun, S. G., Park, H. S., Lee, J. H., Ma, C. W., 2008, Effects of sediment disturbance caused by bridge construction on macrobenthic communities in Asan Bay, Korea, J. Environ. Biol., 29, 559-566.
  24. Park, H. G., 2014, Causes and reduction measures of algal blooms, Bull. Korea Environ. Preser. Assoc., Serial No. 412, 17-21.
  25. Rabalais, N. N., Turner, R. E., Wiseman, W. J., 2002, Gulf of Mexico hypoxia, a.k.a. "The dead zone", Annu. Rev. Ecol. Syst., 33, 235-263. https://doi.org/10.1146/annurev.ecolsys.33.010802.150513
  26. Ram, A., Jaiswar, J. R. M., Rokade, M. A., Bharti, S., Vishwasrao, C., Majithiya, D., 2014, Nutrients, hypoxia and Mass Fishkill events in Tapi Estuary, India., Estuar. Coast. Shelf Sci., 148, 48-58. https://doi.org/10.1016/j.ecss.2014.06.013
  27. Rosenberg, R., Loo, L. O., 1988, Marine eutrophication induced oxygen deficiency: effects on soft bottom fauna, western Sweden, Ophelia, 29, 213-225. https://doi.org/10.1080/00785326.1988.10430830
  28. Sundback, K., Jonsson, B., Nilsson, P., Lindstrom, I., 1990, Impact of accumulating drifting macroalgae on a shallow-water sediment system: an experimental study, Mar. Ecol. Prog. Ser., 58, 261-274. https://doi.org/10.3354/meps058261
  29. Vollenweider, R. A., Giovanardi, F., Montanari, G., Rinaldi, A., 1998, Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index, Environmetrics, 9, 329-357. https://doi.org/10.1002/(SICI)1099-095X(199805/06)9:3<329::AID-ENV308>3.0.CO;2-9
  30. Woo, J., Lee, H., Park, J., Park, K., Cho, D., Jang, D., Park, S., Choi, M., Yoo, J., 2019, Background concentration and contamination assessment of heavy metals in Korean coastal sediments, The Sea, 24, 64-78. https://doi.org/10.7850/JKSO.2019.24.1.064
  31. Wu, J. T., Chou, T. L., 2003, Silicate as the limiting nutrient for phytoplankton in a subtropical eutrophic estuary of Taiwan, Estuar. Coast. Shelf Sci., 58, 155-162. https://doi.org/10.1016/S0272-7714(03)00070-2
  32. Yang, D. B., Hong, J. S., 1988, On the biogeochemical characteristics of surface sediments in Chinhae Bay in September 1983, Korean J. Fish. Aquat. Sci., 21, 195-205.
  33. Yang, E. R., Jeong, B. K., Lee, E. J., Ryu, D. K., Shin, Y. S., 2014, Size and species composition of phytoplankton related to anthropogenic environmental changes in Doam Bay, J. Environ. Sci. Int., 23, 1183-1197. https://doi.org/10.5322/JESI.2014.23.6.1183
  34. Yoo, J., Kim, I. S., Kim, S. H., Ekpeghere, K. I., Chang, J. S., Koh, S. C., 2017, Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium, Korean J. Microbiol., 53, 83-96. https://doi.org/10.7845/KJM.2017.7038
  35. Yu, J. S., Lee, M. J., Rho, J. H., Yoon, S. H., Kim, M. H., 2002, Tracking experimentation of floating debris drained from Nak-dong River, J. Korean Soc. Mar. Environ. Energy., 5, 3-9.
  36. Yu, O. H., Lee, H. G., Lee, J. H., 2011, The influence of environmental variables on macrobenthic communities after dike construction in Asan Bay, Korea, Korean J. Environ. Biol., 29, 326-344.
  37. Zhang, P., Pang, Y., Pan, H., Shi, C., Huang, Y., Wang, J., 2015, Factors Contributing to Hypoxia in the Minjiang River Estuary, Southeast China, Int. J. Environ. Res. Public Health, 12, 9357-9374. https://doi.org/10.3390/ijerph120809357