DOI QR코드

DOI QR Code

Residue level and pharmacokinetics of trichlorfon in the Japanese eel (Anguilla japonica) after bath treatment

Trichlorfon (TCF)의 약욕 투여에 따른 뱀장어 체내 약물 잔류량 및 약물동태학 연구

  • Jo, Hyun Ho (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Chung, Joon Ki (Department of Aquatic Life Medicine, Pukyong National University)
  • 조현호 (부경대학교 수산생명의학과) ;
  • 정준기 (부경대학교 수산생명의학과)
  • Received : 2021.11.15
  • Accepted : 2022.02.04
  • Published : 2022.06.30

Abstract

This study performed a trichlorfon (TCF) residue and pharmacokinetic analysis with Japanese eels, Anguilla japonica, to obtain baseline data to establish the maximum residue level (MRL) of TCF in A. japonica. After dipping A. japonica in 30 ppm and 150 ppm of TCF at 28℃ and 18℃, drug residue in the body was analyzed with LC-MS/MS, and these results were further analyzed with the PK solver program to obtain the pharmacokinetic parameters of TCF in the serum, muscles, and liver. The maximum concentrations (Cmax) in the serum, muscles, and liver were 25.87-357.42, 129.91-1043.73, and 40.47-375.20, respectively, and the time to maximum concentration (Tmax) was 0.13-1.32h, 1.17-3.34h, and 0.14-5.40h, respectively. The terminal elimination half-life (T1/2) was 2.13-3.92h, 5.30-10.35h, and 0.65-13.81h, respectively. In the 30 mg/L concentration group, TCF was not detected in the serum of eels 96 hours after bathing, and was below the detection limit after 336 hours in muscle and liver. On the other hand, in the 150 mg/L concentration group, TCF was not detected in the serum of eels 336 hours after bathing, but was detected in muscle and liver at 336 hours. In conclusion, the results of this study would be useful in establishing the MRL of TCF in farmed A. japonica.

본 연구에서는 뱀장어에 대한 trichlorfon (TCF)의 잔류허용기준(maximum residue level, MRL) 설정을 위한 기초 자료를 얻기 위하여 뱀장어를 대상으로 하여 trichlorfon (TCF) 노출에 따른 체내 잔류량 및 약물동태학적 분석을 실시했다. 28℃와 18℃ 에서 각각 30 ppm 및 150 ppm의 TCF를 30분간 약욕하여 이에 따른 체내 약물잔류농도를 LC-MS/MS로 분석한 결과를 바탕으로 PK solver program 을 이용하여 혈청, 근육 및 간에서 TCF의 약동학 파라미터를 얻었다. 혈청, 근육 및 간에서 최고 농도(Cmax)는 25.87-357.42, 129.91-1043.73 및 40.47-375.20였고, 최고 농도 도달시간(Tmax)는 0.13-1.32 h, 1.17-3.34 h, 및 0.14-5.40 h이었으며, 배설 반감기 (T1/2)는 2.13-3.92 h, 5.30-10.35 h, 및 0.65-13.81 h이었다. 30 mg/L농도 투여군에서는 약욕 후 96시간이 지난 뱀장어의 혈청에서 TCF가 검출되지 않았으며, 근육 및 간에서는 336시간이후 부터 검출 한계 이하로 나타났다. 반면에 150 mg/L농도 투여군에서는 약욕 후 336시간이 지난 뱀장어의 혈청에서 TCF가 검출되지 않았지만, 근육 및 간에서는 336시간에도 검출되었다. 결론적으로 본 연구를 통해 얻은 결과들은 향후 양식 뱀장어에 대한 trichlorfon (TCF)의 잔류허용기준(MRL) 설정에 유용한 기초 자료로 활용 될 것으로 기대한다.

Keywords

Acknowledgement

이 논문(또는 저서)은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었음.

References

  1. Brandal, P. O., Eg~d~us, E. Treatment of salmon llce (Lepeophtheirus salmonis Krayer, 1838) wlth Neguvon® - description of method and equipment. Aquaculture 18, no. 2: 183-188, 1979. https://doi.org/10.1016/0044-8486(79)90030-9
  2. Guimaraes, A.T.B., Silva de Assis, H.C. and Boeger, W. The effect of trichlorfon on acetycholinesterase activity and histopathology of cultivated fish Oreochromis niloticus. Ecotoxicol. Environ. Saf., 68, 57-62, 2007. https://doi.org/10.1016/j.ecoenv.2006.08.005
  3. M. D. Ferrando, E. Sancho, and E. Andreu-Moliner, "Comparative acute toxicities of selected pesticides to Anguilla anguilla," Journal of Environmental Science and Health. Part B, vol. 26, no. 5-6, pp. 491-498, 1991. https://doi.org/10.1080/03601239109372751
  4. Son, K.T., Jo, M.R., Oh, E.G., Mok, J.S., Kwon, J.Y., Lee, T.S., Song, K.C., Kim, P.H. and Kwon, H.J. Residues of ampicillin and amoxicillin in olive flounder Paralichthys olivaceus following oral administration, Kor J Fish Aquat Sci, 44(5): 464-469, 2011. https://doi.org/10.5657/KFAS.2011.0464
  5. Treves-Brown, K.M. Tetracyclines. In Applied Fish Pharmacology, pp. 64 82. Kluwer Academic Publishers, Boston, 2000.
  6. WHO. Antimicrobial Use in Aquaculture and Antimicrobial Resistance. World Health Organization.
  7. Woo, S. J., Lee, H. H., & Chung, J. K. Simultaneous determination of trichlorfon and dichlorvos residues in olive flounder (Paralichthys olivaceus) by liquid chromatography- mass spectrometry: validation and application to pharmacokinetics. RRJPPS, 5, 85-95, 2016.
  8. Woo, S. J. Drug metabolism system associated with the exposure of benzo[a]pyrene and trichlorfon in rockfish (Sebastes schlegelii). dissertation, Pukyong National University Graduate School, 2019.
  9. Xu, N., Li, M., Fu, Y., Zhang, X., Dong, J., Liu, Y., Zhou, S., Ai, X., & Lin, Z. Effect of temperature on plasma and tissue kinetics of doxycycline in grass carp (Ctenopharyngodon idella) after oral ad-ministration. Aquaculture, 511, 734204, 2019. https://doi.org/10.1016/j.aquaculture.2019.734204
  10. Yang, F., Yang, F., Wang, G., Kong, T., Wang, H., & Zhang, C. Effects of water temperature on tissue depletion of florfenicol and its metabolite florfenicol amine in crucian carp (Carassius auratus gibelio) following multiple oral doses. Aquaculture, 515, 734542, 2020. https://doi.org/10.1016/j.aquaculture.2019.734542
  11. Yonar, M Enis, Serpil Mise Yonar, Aysegul Pala, Sibel Silici, and Naim Saglam. Trichlorfon-Induced Haematological and Biochemical Changes in Cyprinus Carpio: Ameliorative Effect of Propolis. Diseases of aquatic organisms 114, no. 3: 209-16, 2015. https://doi.org/10.3354/dao02866
  12. Zhang, Q. & Li, X. Pharmacokinetics and residue elimination of oxytetracycline in grass carp, Ctenopharyngodon idellus, Aquaculture 272, 140-145, 2007. https://doi.org/10.1016/j.aquaculture.2007.08.033
  13. Zhang, Yong, Meirong Huo, Jianping Zhou, and Shaofei Xie. Pksolver: An Add-in Program for Pharmacokinetic and Pharmacodynamic Data Analysis in Microsoft Excel. Computer methods and programs in biomedicine 99, no. 3. 306-14, 2010. https://doi.org/10.1016/j.cmpb.2010.01.007