Acknowledgement
This work was supported by the Institute of Engineering Research of Seoul National University, and U.S. Air Force Office of Scientific Research under award number FA2386-20-1-4067. Authors are grateful for the supports.
References
- Azoti, W.L., Bonfoh, N., Koutsawa, Y., Belouettar, S. and Lipinski, P. (2013), "Influence of auxeticity of reinforcements on the overall properties of viscoelastic composite materials", Mech. Mater., 61, 28-38. https://doi.org/10.1016/j.mechmat.2013.02.002.
- Babaei, B., Davarian, A., Pryse, K.M., Elson, E.L. and Genin, G.M. (2016), "Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra", J. Mech. Behav. Biomed. Mater., 55, 32-41. https://doi.org/10.1016/j.jmbbm.2015.10.008.
- Berbenni, S., Dinzart, F. and Sabar, H. (2015), "A new internal variables homogenization scheme for linear viscoelastic materials based on an exact Eshelby interaction law", Mech. Mater., 81, 110-124. https://doi.org/10.1016/j.mechmat.2014.11.003.
- Brenner, R., Masson, R., Castelnau, O. and Zaoui, A. (2002), "A "quasi-elastic" affine formulation for the homogenised behaviour of nonlinear viscoelastic polycrystals and composites", Eur. J. Mech.-A/Solid., 21(6), 943-960. https://doi.org/10.1016/S0997-7538(02)01247-0.
- Brinson, L.C. and Lin, W. (1998), "Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites", Compos. Struct., 41(3-4), 353-367. https://doi.org/10.1016/S0263-8223(98)00019-1.
- Chen, Y., Yang, P., Zhou, Y., Guo, Z., Dong, L. and Busso, E.P. (2020), "A micromechanics-based constitutive model for linear viscoelastic particle-reinforced composites", Mech. Mater., 140, 103228. https://doi.org/10.1016/j.mechmat.2019.103228.
- Christensen, R.M. (1969), "Viscoelastic properties of heterogeneous media", J. Mech. Phys. Solid., 17(1), 23-41. https://doi.org/10.1016/0022-5096(69)90011-8.
- Czarnota, C., Kowalczyk-Gajewska, K., Salahouelhadj, A., Martiny, M. and Mercier, S. (2015), "Modeling of the cyclic behavior of elastic-viscoplastic composites by the additive tangent Mori-Tanaka approach and validation by finite element calculations", Int. J. Solid. Struct., 56-57, 96-117. https://doi.org/10.1016/j.ijsolstr.2014.12.002.
- DeBotton, G. and Tevet-Deree, L. (2004), "The response of a fiber-reinforced composite with a viscoelastic matrix phase", J. Compos. Mater., 38(14), 1255-1277. https://doi.org/10.1177/0021998304042732.
- Dederichs, P.H. and Zeller, R. (1973), "Variational treatment of the elastic constants of disordered materials", Zeitschrift fur Physik A Hadrons and Nuclei, 259(2), 103-116. https://doi.org/10.1007/BF01392841.
- Digimat, A. (2011), "Software for the linear and nonlinear multi-scale modeling of heterogeneous materials", e-Xstream Engineering, Louvain-la-Neuve, Belgium.
- Doghri, I. and Ouaar, A. (2003), "Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms", Int. J. Solid. Struct., 40(7), 1681-1712. https://doi.org/10.1016/S0020-7683(03)00013-1.
- Dunn, M.L. (1995), "Viscoelastic damping of particle and fiber reinforced composite materials", J. Acoust. Soc. Am., 98(6), 3360-3374. https://doi.org/10.1121/1.413823.
- Dutra, V.F.P., Maghous, S., Campos, A. and Pacheco, A.R. (2010), "A micromechanical approach to elastic and viscoelastic properties of fiber reinforced concrete", Cement Concrete Res., 40(3), 460-472. https://doi.org/10.1016/j.cemconres.2009.10.018.
- Escarpini Filho, R.D.S. and Marques, S.P.C. (2016), "A model for homogenization of linear viscoelastic periodic composite materials with imperfect interface", Lat. Am. J. Solid. Struct., 13(14), 2706-2735. https://doi.org/10.1590/1679-78252749.
- Fassi-Fehri, O. (1985), "Le probleme de la paire d'inclusions plastiques et heterogenes dans une matrice anisotrope: application a l'etude du comportement des materiaux composites et de la plasticite", Universite Paul Verlaine-Metz.
- Fisher, F.T. and Brinson, L.C. (2001), "Viscoelastic interphases in polymer-matrix composites: theoretical models and finite-element analysis", Compos. Sci. Technol., 61(5), 731-748. https://doi.org/10.1016/S0266-3538(01)00002-1.
- Gillani, A. (2018), "Development of material model subroutimes for linear and non linear response of elastomers", University of Western Ontario, Ontario.
- Hashin, Z. (1965), "Viscoelastic behavior of heterogeneous media", J. Appl. Mech., 32(3), 630-636. https://doi.org/10.1115/1.3627270.
- Hashin, Z. (1970), "Complex moduli of viscoelastic composites-I. General theory and application to particulate composites", Int. J. Solid. Struct., 6(5), 539-552. https://doi.org/10.1016/0020-7683(70)90029-6.
- Hu, A., Li, X., Ajdari, A., Jiang, B., Burkhart, C., Chen, W. and Brinson, L.C. (2018), "Computational analysis of particle reinforced viscoelastic polymer nanocomposites-statistical study of representative volume element", J. Mech. Phys. Solid., 114, 55-74. https://doi.org/10.1016/j.jmps.2018.02.013.
- Jung, J., Park, C., Ryu, M.S. and Yun, G.J. (2021), "A molecular structure-informed viscoelastic constitutive model for natural rubber materials", Funct. Compos. Struct., 3(4), 045002. https://doi.org/10.1088/2631-6331/ac34fc.
- Khan, M.M.K., Liang, R. Gupta, R. and Agarwal, S. (2005), "Rheological and mechanical properties of ABS/PC blends", Korea-Australia Rheology J., 17(1), 1-7.
- Kim, Y., Jung, J., Lee, S., Doghri, I. and Ryu, S. (2022), "Adaptive affine homogenization method for Viscohyperelastic composites with imperfect interface", Appl. Math. Model., 107, 72-84. https://doi.org/10.1016/j.apm.2022.02.007.
- Kitey, R. and Tippur, H. (2005), "Role of particle size and filler-matrix adhesion on dynamic fracture of glassfilled epoxy. I. Macromeasurements", Acta Materialia, 53(4), 1153-1165. https://doi.org/10.1016/j.actamat.2004.11.012.
- Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlin. Dyn., 90(1), 479-492. https://doi.org/10.1007/s11071-017-3676-x.
- Lahellec, N. and Suquet, P. (2007), "Effective behavior of linear viscoelastic composites: A time-integration approach", Int. J. Solid. Struct., 44(2), 507-529. https://doi.org/10.1016/j.ijsolstr.2006.04.038.
- Laws, N. and McLaughlin, R. (1978), "Self-consistent estimates for the viscoelastic creep compliances of composite materials", Proc. Roy. Soc. London Ser. A, 359(1697), 251-273. https://doi.org/10.1098/rspa.1978.0041.
- Le, Q., Meftah, F., He, Q.C.and Le Pape, Y. (2007), "Creep and relaxation functions of a heterogeneous viscoelastic porous medium using the Mori-Tanaka homogenization scheme and a discrete microscopic retardation spectrum", Mech. Time-Depend. Mater., 11(3-4), 309-331. https://doi.org/10.1007/S11043-008-9051-Z.
- Li, J. and Weng, G.J. (1994), "Strain-rate sensitivity, relaxation behavior, and complex moduli of a class of isotropic viscoelastic composites", J. Eng. Mater. Technol., 116(4), 495-504. https://doi.org/10.1115/1.2904319.
- Li, K., Gao, X.L. and Roy, A.K. (2006), "Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites", Mech. Adv. Mater. Struct., 13(4), 317-328. https://doi.org/10.1080/15376490600583931.
- Liu, Z. (2017), "Reduced-order homogenization of heterogeneous material systems: from viscoelasticity to nonlinear elasto-plastic softening material", Northwestern University.
- Molinari, A., Ahzi, S. and Kouddane, R. (1997), "On the self-consistent modeling of elastic-plastic behavior of polycrystals", Mech. Mater., 26(1), 43-62. https://doi.org/10.1016/S0167-6636(97)00017-3.
- Muller, M. (2017), "Mechanical properties of resin reinforced with glass beads", Agron. Res., 15(S1), 1107-1118. https://doi.org/10.1177/096739111802600105.
- Paipetis, S.A. and Grootenhuis, P. (1979), "The dynamic properties of particle reinforced viscoelastic composites", Fib. Sci. Technol., 12(5), 377-393. https://doi.org/10.1016/0015-0568(79)90004-6.
- Pan, Z., Huang, R. and Liu, Z. (2019), "Prediction of the thermomechanical behavior of particle reinforced shape memory polymers", Polym. Compos., 40(1), 353-363. https://doi.org/10.1002/pc.24658.
- Patnaik, S.S., Swain, A. and Roy, T. (2020), "Creep compliance and micromechanics of multi-walled carbon nanotubes based hybrid composites", Compos. Mater. Eng., 2(2), 141. https://doi.org/10.12989/cme.2020.2.2.141.
- Qu, J. (1993), "The effect of slightly weakened interfaces on the overall elastic properties of composite materials", Mech. Mater., 14(4), 269-281. https://doi.org/10.1016/0167-6636(93)90082-3.
- Ricaud, J.M. and Masson, R. (2009), "Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours", Int. J. Solid. Struct., 46(7), 1599-1606. https://doi.org/10.1016/j.ijsolstr.2008.12.007.
- Rodriguez-Ramos, R., Otero, J. A., Cruz-Gonzalez, O. L., Guinovart-Diaz, R., Bravo-Castillero, J., Sabina, F. J., ... & Sevostianov, I. (2020), "Computation of the relaxation effective moduli for fibrous viscoelastic composites using the asymptotic homogenization method", Int. J. Solid. Struct., 190, 281-290. https://doi.org/10.1016/j.ijsolstr.2019.11.014.
- Sevostianov, I., Levin, V. and Radi, E. (2016), "Effective viscoelastic properties of short-fiber reinforced composites", Int. J. Eng. Sci., 100, 61-73. https://doi.org/10.1016/j.ijengsci.2015.10.008.
- Shokrieh, M.M., Ghajar, R. and Shajari, A.R. (2016), "The effect of time-dependent slightly weakened interface on the viscoelastic properties of CNT/polymer nanocomposites", Compos. Struct., 146, 122-131. https://doi.org/10.1016/j.compstruct.2016.03.022.
- Tchalla, A., Azoti, W.L., Koutsawa, Y., Makradi, A., Belouettar, S. and Zahrouni, H. (2015), "Incremental mean-fields micromechanics scheme for non-linear response of ductile damaged composite materials", Compos. Part B: Eng., 69, 169-180. https://doi.org/10.1016/j.compositesb.2014.08.055.
- Vieville, P., Bonnet, A. and Lipinski, P. (2006), "Modelling effective properties of composite materials using the inclusion concept. General considerations", Arch. Mech., 58(3), 207-239.
- Vieville, P., Bonnet, A.S. and Lipinski, P. (2006), "Modelling effective properties of composite materials using the inclusion concept. General considerations", Arch. Mech., 58(3), 207-239.
- Zhao, W., Liu, L., Leng, J. and Liu, Y. (2019), "Thermo-mechanical behavior prediction of particulate reinforced shape memory polymer composite", Compos. Part B: Eng., 179, 107455. https://doi.org/10.1016/j.compositesb.2019.107455.
- Zhu, X.Y., Wang, X. and Yu, Y. (2014), "Micromechanical creep models for asphalt-based multi-phase particle-reinforced composites with viscoelastic imperfect interface", Int. J. Eng. Sci., 76, 34-46. https://doi.org/10.1016/j.ijengsci.2013.11.011.