DOI QR코드

DOI QR Code

A micromechanics-based time-domain viscoelastic constitutive model for particulate composites: Theory and experimental validation

  • You, Hangil (Department of Aerospace Engineering, Seoul National University) ;
  • Lim, Hyoung Jun (Department of Aerospace Engineering, Seoul National University) ;
  • Yun, Gun Jin (Department of Aerospace Engineering, Seoul National University)
  • Received : 2022.02.09
  • Accepted : 2022.05.18
  • Published : 2022.05.25

Abstract

This paper proposes a novel time-domain homogenization model combining the viscoelastic constitutive law with Eshelby's inclusion theory-based micromechanics model to predict the mechanical behavior of the particle reinforced composite material. The proposed model is intuitive and straightforward capable of predicting composites' viscoelastic behavior in the time domain. The isotropization technique for non-uniform stress-strain fields and incremental Mori-Tanaka schemes for high volume fraction are adopted in this study. Effects of the imperfectly bonded interphase layer on the viscoelastic behavior on the dynamic mechanical behavior are also investigated. The proposed model is verified by the direct numerical simulation and DMA (dynamic mechanical analysis) experimental results. The proposed model is useful for multiscale analysis of viscoelastic composite materials, and it can also be extended to predict the nonlinear viscoelastic response of composite materials.

Keywords

Acknowledgement

This work was supported by the Institute of Engineering Research of Seoul National University, and U.S. Air Force Office of Scientific Research under award number FA2386-20-1-4067. Authors are grateful for the supports.

References

  1. Azoti, W.L., Bonfoh, N., Koutsawa, Y., Belouettar, S. and Lipinski, P. (2013), "Influence of auxeticity of reinforcements on the overall properties of viscoelastic composite materials", Mech. Mater., 61, 28-38. https://doi.org/10.1016/j.mechmat.2013.02.002.
  2. Babaei, B., Davarian, A., Pryse, K.M., Elson, E.L. and Genin, G.M. (2016), "Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra", J. Mech. Behav. Biomed. Mater., 55, 32-41. https://doi.org/10.1016/j.jmbbm.2015.10.008.
  3. Berbenni, S., Dinzart, F. and Sabar, H. (2015), "A new internal variables homogenization scheme for linear viscoelastic materials based on an exact Eshelby interaction law", Mech. Mater., 81, 110-124. https://doi.org/10.1016/j.mechmat.2014.11.003.
  4. Brenner, R., Masson, R., Castelnau, O. and Zaoui, A. (2002), "A "quasi-elastic" affine formulation for the homogenised behaviour of nonlinear viscoelastic polycrystals and composites", Eur. J. Mech.-A/Solid., 21(6), 943-960. https://doi.org/10.1016/S0997-7538(02)01247-0.
  5. Brinson, L.C. and Lin, W. (1998), "Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites", Compos. Struct., 41(3-4), 353-367. https://doi.org/10.1016/S0263-8223(98)00019-1.
  6. Chen, Y., Yang, P., Zhou, Y., Guo, Z., Dong, L. and Busso, E.P. (2020), "A micromechanics-based constitutive model for linear viscoelastic particle-reinforced composites", Mech. Mater., 140, 103228. https://doi.org/10.1016/j.mechmat.2019.103228.
  7. Christensen, R.M. (1969), "Viscoelastic properties of heterogeneous media", J. Mech. Phys. Solid., 17(1), 23-41. https://doi.org/10.1016/0022-5096(69)90011-8.
  8. Czarnota, C., Kowalczyk-Gajewska, K., Salahouelhadj, A., Martiny, M. and Mercier, S. (2015), "Modeling of the cyclic behavior of elastic-viscoplastic composites by the additive tangent Mori-Tanaka approach and validation by finite element calculations", Int. J. Solid. Struct., 56-57, 96-117. https://doi.org/10.1016/j.ijsolstr.2014.12.002.
  9. DeBotton, G. and Tevet-Deree, L. (2004), "The response of a fiber-reinforced composite with a viscoelastic matrix phase", J. Compos. Mater., 38(14), 1255-1277. https://doi.org/10.1177/0021998304042732.
  10. Dederichs, P.H. and Zeller, R. (1973), "Variational treatment of the elastic constants of disordered materials", Zeitschrift fur Physik A Hadrons and Nuclei, 259(2), 103-116. https://doi.org/10.1007/BF01392841.
  11. Digimat, A. (2011), "Software for the linear and nonlinear multi-scale modeling of heterogeneous materials", e-Xstream Engineering, Louvain-la-Neuve, Belgium.
  12. Doghri, I. and Ouaar, A. (2003), "Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms", Int. J. Solid. Struct., 40(7), 1681-1712. https://doi.org/10.1016/S0020-7683(03)00013-1.
  13. Dunn, M.L. (1995), "Viscoelastic damping of particle and fiber reinforced composite materials", J. Acoust. Soc. Am., 98(6), 3360-3374. https://doi.org/10.1121/1.413823.
  14. Dutra, V.F.P., Maghous, S., Campos, A. and Pacheco, A.R. (2010), "A micromechanical approach to elastic and viscoelastic properties of fiber reinforced concrete", Cement Concrete Res., 40(3), 460-472. https://doi.org/10.1016/j.cemconres.2009.10.018.
  15. Escarpini Filho, R.D.S. and Marques, S.P.C. (2016), "A model for homogenization of linear viscoelastic periodic composite materials with imperfect interface", Lat. Am. J. Solid. Struct., 13(14), 2706-2735. https://doi.org/10.1590/1679-78252749.
  16. Fassi-Fehri, O. (1985), "Le probleme de la paire d'inclusions plastiques et heterogenes dans une matrice anisotrope: application a l'etude du comportement des materiaux composites et de la plasticite", Universite Paul Verlaine-Metz.
  17. Fisher, F.T. and Brinson, L.C. (2001), "Viscoelastic interphases in polymer-matrix composites: theoretical models and finite-element analysis", Compos. Sci. Technol., 61(5), 731-748. https://doi.org/10.1016/S0266-3538(01)00002-1.
  18. Gillani, A. (2018), "Development of material model subroutimes for linear and non linear response of elastomers", University of Western Ontario, Ontario.
  19. Hashin, Z. (1965), "Viscoelastic behavior of heterogeneous media", J. Appl. Mech., 32(3), 630-636. https://doi.org/10.1115/1.3627270.
  20. Hashin, Z. (1970), "Complex moduli of viscoelastic composites-I. General theory and application to particulate composites", Int. J. Solid. Struct., 6(5), 539-552. https://doi.org/10.1016/0020-7683(70)90029-6.
  21. Hu, A., Li, X., Ajdari, A., Jiang, B., Burkhart, C., Chen, W. and Brinson, L.C. (2018), "Computational analysis of particle reinforced viscoelastic polymer nanocomposites-statistical study of representative volume element", J. Mech. Phys. Solid., 114, 55-74. https://doi.org/10.1016/j.jmps.2018.02.013.
  22. Jung, J., Park, C., Ryu, M.S. and Yun, G.J. (2021), "A molecular structure-informed viscoelastic constitutive model for natural rubber materials", Funct. Compos. Struct., 3(4), 045002. https://doi.org/10.1088/2631-6331/ac34fc.
  23. Khan, M.M.K., Liang, R. Gupta, R. and Agarwal, S. (2005), "Rheological and mechanical properties of ABS/PC blends", Korea-Australia Rheology J., 17(1), 1-7.
  24. Kim, Y., Jung, J., Lee, S., Doghri, I. and Ryu, S. (2022), "Adaptive affine homogenization method for Viscohyperelastic composites with imperfect interface", Appl. Math. Model., 107, 72-84. https://doi.org/10.1016/j.apm.2022.02.007.
  25. Kitey, R. and Tippur, H. (2005), "Role of particle size and filler-matrix adhesion on dynamic fracture of glassfilled epoxy. I. Macromeasurements", Acta Materialia, 53(4), 1153-1165. https://doi.org/10.1016/j.actamat.2004.11.012.
  26. Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlin. Dyn., 90(1), 479-492. https://doi.org/10.1007/s11071-017-3676-x.
  27. Lahellec, N. and Suquet, P. (2007), "Effective behavior of linear viscoelastic composites: A time-integration approach", Int. J. Solid. Struct., 44(2), 507-529. https://doi.org/10.1016/j.ijsolstr.2006.04.038.
  28. Laws, N. and McLaughlin, R. (1978), "Self-consistent estimates for the viscoelastic creep compliances of composite materials", Proc. Roy. Soc. London Ser. A, 359(1697), 251-273. https://doi.org/10.1098/rspa.1978.0041.
  29. Le, Q., Meftah, F., He, Q.C.and Le Pape, Y. (2007), "Creep and relaxation functions of a heterogeneous viscoelastic porous medium using the Mori-Tanaka homogenization scheme and a discrete microscopic retardation spectrum", Mech. Time-Depend. Mater., 11(3-4), 309-331. https://doi.org/10.1007/S11043-008-9051-Z.
  30. Li, J. and Weng, G.J. (1994), "Strain-rate sensitivity, relaxation behavior, and complex moduli of a class of isotropic viscoelastic composites", J. Eng. Mater. Technol., 116(4), 495-504. https://doi.org/10.1115/1.2904319.
  31. Li, K., Gao, X.L. and Roy, A.K. (2006), "Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites", Mech. Adv. Mater. Struct., 13(4), 317-328. https://doi.org/10.1080/15376490600583931.
  32. Liu, Z. (2017), "Reduced-order homogenization of heterogeneous material systems: from viscoelasticity to nonlinear elasto-plastic softening material", Northwestern University.
  33. Molinari, A., Ahzi, S. and Kouddane, R. (1997), "On the self-consistent modeling of elastic-plastic behavior of polycrystals", Mech. Mater., 26(1), 43-62. https://doi.org/10.1016/S0167-6636(97)00017-3.
  34. Muller, M. (2017), "Mechanical properties of resin reinforced with glass beads", Agron. Res., 15(S1), 1107-1118. https://doi.org/10.1177/096739111802600105.
  35. Paipetis, S.A. and Grootenhuis, P. (1979), "The dynamic properties of particle reinforced viscoelastic composites", Fib. Sci. Technol., 12(5), 377-393. https://doi.org/10.1016/0015-0568(79)90004-6.
  36. Pan, Z., Huang, R. and Liu, Z. (2019), "Prediction of the thermomechanical behavior of particle reinforced shape memory polymers", Polym. Compos., 40(1), 353-363. https://doi.org/10.1002/pc.24658.
  37. Patnaik, S.S., Swain, A. and Roy, T. (2020), "Creep compliance and micromechanics of multi-walled carbon nanotubes based hybrid composites", Compos. Mater. Eng., 2(2), 141. https://doi.org/10.12989/cme.2020.2.2.141.
  38. Qu, J. (1993), "The effect of slightly weakened interfaces on the overall elastic properties of composite materials", Mech. Mater., 14(4), 269-281. https://doi.org/10.1016/0167-6636(93)90082-3.
  39. Ricaud, J.M. and Masson, R. (2009), "Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours", Int. J. Solid. Struct., 46(7), 1599-1606. https://doi.org/10.1016/j.ijsolstr.2008.12.007.
  40. Rodriguez-Ramos, R., Otero, J. A., Cruz-Gonzalez, O. L., Guinovart-Diaz, R., Bravo-Castillero, J., Sabina, F. J., ... & Sevostianov, I. (2020), "Computation of the relaxation effective moduli for fibrous viscoelastic composites using the asymptotic homogenization method", Int. J. Solid. Struct., 190, 281-290. https://doi.org/10.1016/j.ijsolstr.2019.11.014.
  41. Sevostianov, I., Levin, V. and Radi, E. (2016), "Effective viscoelastic properties of short-fiber reinforced composites", Int. J. Eng. Sci., 100, 61-73. https://doi.org/10.1016/j.ijengsci.2015.10.008.
  42. Shokrieh, M.M., Ghajar, R. and Shajari, A.R. (2016), "The effect of time-dependent slightly weakened interface on the viscoelastic properties of CNT/polymer nanocomposites", Compos. Struct., 146, 122-131. https://doi.org/10.1016/j.compstruct.2016.03.022.
  43. Tchalla, A., Azoti, W.L., Koutsawa, Y., Makradi, A., Belouettar, S. and Zahrouni, H. (2015), "Incremental mean-fields micromechanics scheme for non-linear response of ductile damaged composite materials", Compos. Part B: Eng., 69, 169-180. https://doi.org/10.1016/j.compositesb.2014.08.055.
  44. Vieville, P., Bonnet, A. and Lipinski, P. (2006), "Modelling effective properties of composite materials using the inclusion concept. General considerations", Arch. Mech., 58(3), 207-239.
  45. Vieville, P., Bonnet, A.S. and Lipinski, P. (2006), "Modelling effective properties of composite materials using the inclusion concept. General considerations", Arch. Mech., 58(3), 207-239.
  46. Zhao, W., Liu, L., Leng, J. and Liu, Y. (2019), "Thermo-mechanical behavior prediction of particulate reinforced shape memory polymer composite", Compos. Part B: Eng., 179, 107455. https://doi.org/10.1016/j.compositesb.2019.107455.
  47. Zhu, X.Y., Wang, X. and Yu, Y. (2014), "Micromechanical creep models for asphalt-based multi-phase particle-reinforced composites with viscoelastic imperfect interface", Int. J. Eng. Sci., 76, 34-46. https://doi.org/10.1016/j.ijengsci.2013.11.011.