참고문헌
- Amin, M. and Tayeh, B.A. (2020), "Investigating the mechanical and microstructure properties of fibre-reinforced lightweight concrete under elevated temperatures", Case Stud. Constr. Mater., 13, e00459. https://doi.org/10.1016/j.cscm.2020.e00459.
- ASMT C1609/C1609M (2019), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (using Beam with Third-Point Loading), West Conshohocken, PA, USA .
- ASMT C33/C33M (2018), Standard Specification for Concrete Aggregates, West Conshohocken, PA, USA.
- ASMT C330/C330M (2014), Standard Specification for Lightweight Aggregates for Structural Concrete, West Conshohocken, PA, USA.
- Banthia, N., Majdzadeh, F., Wu, J. and Bindiganavile, V. (2014), "Fiber synergy in hybrid fiber reinforced concrete (hyfrc) in flexure and direct shear", Cement Concrete Compos., 48(4), 91-97. https://doi.org/10.1016/j.cemconcomp.2013.10.018.
- Chang, T.P. and Su, N.K. (1996), "Estimation of coarse aggregate strength in high-strength concrete", Mater. J., 93(1), 3-9.
- Cheng, C., Hong, S., Zhang, Y. and He, J. (2020), "Effect of expanded polystyrene on the flexural behavior of lightweight glass fiber reinforced cement", Constr. Build. Mater., 265(12), 120328. https://doi.org/10.1016/j.conbuildmat.2020.120328.
- Congro, M., Roehl, D. and Mejia, C. (2021), "Mesoscale computational modeling of the mechanical behavior of cement composite materials", Compos. Struct., 257(1), 113137. https://doi.org/10.1016/j.compstruct.2020.113137.
- Du, X. and Jin, L. (2021), Methodology: Meso-Scale Simulation Approach, Size Effect in Concrete Materials and Structures, Singapore, Springer.
- Esmaeili, J., Andalibi, K., Gencel, O., Maleki, F.K.and Maleki, V.A. (2021), "Pull-out and bond-slip performance of steel fibers with various ends shapes embedded in polymer-modified concrete", Constr. Build. Mater., 271(1), 121531. https://doi.org/10.1016/j.conbuildmat.2020.121531.
- Esmaeili, J. and Andalibia, K. (2019), "Development of 3D Meso-Scale finite element model to study the mechanical behavior of steel microfiber-reinforced polymer concrete", Comput. Concrete, 24(5), 413-422. https://doi.org/10.12989/cac.2019.24.5.413.
- Gal, E. and Kryvoruk, R. (2011), "Fiber reinforced concrete properties-A multiscale approach", Comput. Concrete, 8(5), 525-539. https://doi.org/10.12989/cac.201.8.5.525.
- Gal, E. and Kryvoruk, R. (2011), "Meso-scale analysis of FRC using a two-step homogenization approach", Comput. Struct., 89(11-12), 921-929. https://doi.org/10.1016/j.compstruc.2011.02.006.
- Ghamari, A., Kurdi, J., Shemirani, A.B. and Haeri, H. (2020), "Experimental investigating the properties of fiber reinforced concrete by combining different fibers", Comput. Concrete, 25(6), 509-516. https://doi.org/10.12989/cac.2020.25.6.509.
- Kalpana, M. and Tayu, A. (2019), "Light weight steel fibre reinforced concrete: A review", Mater. Today: Proc., 22, 884-886. https://doi.org/10.1016/j.matpr.2019.11.095.
- Kh, H.M., Ozakca, M., Ekmekyapar, T. and Kh, A.M. (2016), "Flexural behavior of concrete beams reinforced with different types of fibers", Comput. Concrete, 18(5), 999-1018. https://doi.org/10.12989/cac.2016.18.5.999.
- Khani, N., Yildiz, M. and Koc, B. (2016), "Elastic properties of coiled carbon nanotube reinforced nanocomposite: A finite element study", Mater. Des., 109(11), 123-132. https://doi.org/10.1016/j.matdes.2016.06.126.
- Naderi, S., Tu, W. and Zhang, M. (2021), "Meso-scale modelling of compressive fracture in concrete with irregularly shaped aggregates", Cement Concrete Res., 140(1), 106317. https://doi.org/10.1016/j.cemconres.2020.106317.
- Pan, Z., Wu, C., Liu, J., Wang, W. and Liu, J. (2015), "Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC)", Constr. Build. Mater., 78(3), 397-404. https://doi.org/10.1016/j.conbuildmat.2014.12.071.
- RILEM TC 162-TDF (2002), "Test and design methods for steel fibre reinforced concrete: bending test", Mater. Struct., 25(253), 4.
- Smolcic, Z. and Ozbolt, J. (2017), "Meso scale model for fiber-reinforced-concrete: Microplane based approach", Comput. Concrete, 19(4), 375-385. https://doi.org/10.12989/cac.2017.19.4.375.
- Wu, T., Sun, L., Wei, H. and Liu, X. (2021), "Uniaxial performance of circular hybrid fibre-reinforced lightweight aggregate concrete columns", Eng. Struct., 238, 112263. https://doi.org/10.1016/j.engstruct.2021.112263.
- Wu, Z., Zhang, J., Fang, Q., Yu, H. and Ma, H. (2021), "3D mesoscopic modelling on the dynamic properties of coral aggregate concrete under direct tension", Eng. Fract. Mech., 247(4), 107636. https://doi.org/10.1016/j.engfracmech.2021.107636.
- Yang, T., Liechti, K.M. and Huang, R. (2020), "A multiscale cohesive zone model for rate-dependent fracture of interfaces", J. Mech. Phys. Solid., 145(12), 104142. https://doi.org/10.1016/j.jmps.2020.104142.
- Zhang, R., Jin, L. and Du, X. (2021), "Three-dimensional mesoscale modelling of failure of steel fiber reinforced concrete at room and elevated temperatures", Constr. Build. Mater., 278(4), 122368. https://doi.org/10.1016/j.conbuildmat.2021.122368.
- Vahidi Pashaki, P., Pouya, M. and Maleki ,V.A. (2018), "High-speed cryogenic machining of the carbon nanotube reinforced nanocomposites: Finite element analysis and simulation", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(11), 1927-1936. https://doi.org/10.1177/0954406217714012.