POSITIVE IMPLICATIVE MBJ-NEUTROSOPHIC IDEALS IN $B C K$-ALGEBRAS

Eun Hwan Roh

Abstract

The notion of positive implicative MBJ-neutosophic ideal of $B C K$-algebras is defined and some properties of it are investigated. Relations between positive implicative MBJ-neutrosophic ideal and positive implicative ideal are discussed. In a $B C K$-algebra, the extension property for positive implicative MBJ-neutrosophic ideal is established.

1. Introduction

In order to handle uncertainties in many real applications, the fuzzy set was introduced by L.A. Zadeh [22] in 1965. The intuitionistic fuzzy set on a universe X was introduced by K. Atanassov in 1983 as a generalization of fuzzy set. As a more general platform that extends the notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set, the notion of neutrosophic set is developed by Smarandache ([15]-[17]). Neutrosophic algebraic structures in $B C K / B C I$-algebras are discussed in the papers [1]-[18]. In [20], the notion of MBJ-neutrosophic sets is introduced as another generalization of neutrosophic set, it is applied to $B C K / B C I$-algebras. Mohseni et al. [20] introduced the concept of MBJ-neutrosophic subalgebras in $B C K / B C I$-algebras, and investigated related properties. They gave a characterization of MBJneutrosophic subalgebra, and established a new MBJ-neutrosophic subalgebra by using an MBJ-neutrosophic subalgebra of a $B C I$-algebra. They considered the homomorphic inverse image of MBJ-neutrosophic subalgebra, and discussed translation of MBJ-neutrosophic subalgebra. Jun and Roh [9] applied the notion of MBJ-neutrosophic sets to ideals of $B C K / B I$-algebras. They introduced the concept of MBJ-neutrosophic ideals in $B C K / B C I$-algebras, and investigated several properties. They provided a condition for an MBJ-neutrosophic subalgebra to be an MBJ-neutrosophic ideal in a $B C K$-algebra. They provided conditions for an MBJ-neutrosophic set to be an MBJ-neutrosophic ideal in a

[^0]$B C K / B C I$-algebra. They discussed relations between MBJ-neutrosophic subalgebras, MBJ-neutrosophic o-subalgebras and MBJ-neutrosophic ideals. In a $B C I$-algebra, they provided conditions for an MBJ-neutrosophic ideal to be an MBJ-neutrosophic subalgebra. In an (S) - $B C K$-algebra, they considered a characterization of an MBJ-neutrosophic ideal. Hur et al. [4] introduced the notion of positive implicative MBJ-neutrosophic ideal, and investigated several properties. They discussed relations between MBJ-neutrosophic ideal and positive implicative MBJ-neutrosophic ideal. They provided characterizations of positive implicative MBJ-neutrosophic ideal.

In this paper, we apply the notion of MBJ-neutrosophic sets to positive implicative MBJ-neutrosophic ideals of $B C K$-algebras, and investigate some properties. We discuss relations between positive implicative MBJ-neutrosophic ideals and positive implicative ideals in $B C K$-algebra. In a $B C K$-algebra, the extension property for positive implicative MBJ-neutrosophic ideal is established.

2. Preliminaries

By a $B C K$-algebra, we mean a set X with a binary operation $*$ and a special element 0 that satisfies the following conditions:
(I) $((x * y) *(x * z)) *(z * y)=0$,
(II) $(x *(x * y)) * y=0$,
(III) $x * x=0$,
(IV) $x * y=0, y * x=0 \Rightarrow x=y$,
(V) $(\forall x \in X)(0 * x=0)$
for all $x, y, z \in X$.
Every $B C K$-algebra X satisfies the following conditions:

$$
\begin{align*}
& (\forall x \in X)(x * 0=x), \tag{1}\\
& (\forall x, y, z \in X)(x \leq y \Rightarrow x * z \leq y * z, z * y \leq z * x), \tag{2}\\
& (\forall x, y, z \in X)((x * y) * z=(x * z) * y), \tag{3}\\
& (\forall x, y, z \in X)((x * z) *(y * z) \leq x * y) \tag{4}
\end{align*}
$$

where $x \leq y$ if and only if $x * y=0$.
A subset I of a $B C K$-algebra X is called an ideal of X if it satisfies:

$$
\begin{equation*}
0 \in I, \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
(\forall x \in X)(\forall y \in I)(x * y \in I \Rightarrow x \in I) . \tag{6}
\end{equation*}
$$

A subset I of a $B C K$-algebra X is called a positive implicative ideal of X if it satisfies (5) and

$$
\begin{equation*}
(\forall x, y, z \in X)((x * y) * z \in I, y * z \in I \Rightarrow x * z \in I) \tag{7}
\end{equation*}
$$

Any positive implicative ideal must be an ideal, but the inverse is not true ([11]).

By an interval number we mean a closed subinterval $\tilde{a}=\left[a^{-}, a^{+}\right]$of I, where $0 \leq a^{-} \leq a^{+} \leq 1$. Denote by $[I]$ the set of all interval numbers. Let us define what is known as refined minimum (briefly, rmin) and refined maximum (briefly, rmax) of two elements in $[I]$. We also define the symbols " \succeq ", " \preceq ", "=" in case of two elements in $[I]$. Consider two interval numbers $\tilde{a}_{1}:=\left[a_{1}^{-}, a_{1}^{+}\right]$ and $\tilde{a}_{2}:=\left[a_{2}^{-}, a_{2}^{+}\right]$. Then

$$
\begin{aligned}
& \operatorname{rmin}\left\{\tilde{a}_{1}, \tilde{a}_{2}\right\}=\left[\min \left\{a_{1}^{-}, a_{2}^{-}\right\}, \min \left\{a_{1}^{+}, a_{2}^{+}\right\}\right], \\
& \operatorname{rmax}\left\{\tilde{a}_{1}, \tilde{a}_{2}\right\}=\left[\max \left\{a_{1}^{-}, a_{2}^{-}\right\}, \max \left\{a_{1}^{+}, a_{2}^{+}\right\}\right], \\
& \tilde{a}_{1} \succeq \tilde{a}_{2} \Leftrightarrow a_{1}^{-} \geq a_{2}^{-}, a_{1}^{+} \geq a_{2}^{+},
\end{aligned}
$$

and similarly we may have $\tilde{a}_{1} \preceq \tilde{a}_{2}$ and $\tilde{a}_{1}=\tilde{a}_{2}$. To say $\tilde{a}_{1} \succ \tilde{a}_{2}\left(\right.$ resp. $\left.\tilde{a}_{1} \prec \tilde{a}_{2}\right)$ we mean $\tilde{a}_{1} \succeq \tilde{a}_{2}$ and $\tilde{a}_{1} \neq \tilde{a}_{2}$ (resp. $\tilde{a}_{1} \preceq \tilde{a}_{2}$ and $\tilde{a}_{1} \neq \tilde{a}_{2}$). Let $\tilde{a}_{i} \in[I]$ where $i \in \Lambda$. We define

$$
\operatorname{rinf}_{i \in \Lambda} \tilde{a}_{i}=\left[\inf _{i \in \Lambda} a_{i}^{-}, \inf _{i \in \Lambda} a_{i}^{+}\right] \text {and } \operatorname{rsup}_{i \in \Lambda} \tilde{a}_{i}=\left[\sup _{i \in \Lambda} a_{i}^{-}, \sup _{i \in \Lambda} a_{i}^{+}\right] .
$$

Let X be a nonempty set. A function $A: X \rightarrow[I]$ is called an intervalvalued fuzzy set (briefly, an IVF set) in X. Let $[I]^{X}$ stand for the set of all IVF sets in X. For every $A \in[I]^{X}$ and $x \in X, A(x)=\left[A^{-}(x), A^{+}(x)\right]$ is called the degree of membership of an element x to A, where $A^{-}: X \rightarrow I$ and $A^{+}: X \rightarrow I$ are fuzzy sets in X which are called a lower fuzzy set and an upper fuzzy set in X, respectively. For simplicity, we denote $A=\left[A^{-}, A^{+}\right]$.

Let X be a non-empty set. A neutrosophic set in X (see [16], [14], [21]) is a structure of the form:

$$
A:=\left\{\left\langle x ; A_{T}(x), A_{I}(x), A_{F}(x)\right\rangle \mid x \in X\right\}
$$

where $A_{T}: X \rightarrow[0,1]$ is a truth membership function, $A_{I}: X \rightarrow[0,1]$ is an indeterminate membership function, and $A_{F}: X \rightarrow[0,1]$ is a false membership function. For the sake of simplicity, we shall use the symbol $A=\left(A_{T}, A_{I}, A_{F}\right)$ for the neutrosophic set

$$
A:=\left\{\left\langle x ; A_{T}(x), A_{I}(x), A_{F}(x)\right\rangle \mid x \in X\right\}
$$

We refer the reader to the books [3,11] for further information regarding $B C K / B C I$-algebras, and to the site "http://fs.gallup.unm.edu/neutrosophy.htm" for further information regarding neutrosophic set theory.

Let X be a non-empty set. By an $M B J$-neutrosophic set in X (see [20]), we mean a structure of the form:

$$
\mathcal{A}:=\left\{\left\langle x ; M_{A}(x), \tilde{B}_{A}(x), J_{A}(x)\right\rangle \mid x \in X\right\}
$$

where M_{A} and J_{A} are fuzzy sets in X, which are called a truth membership function and a false membership function, respectively, and \tilde{B}_{A} is an IVF set in X which is called an indeterminate interval-valued membership function.

For the sake of simplicity, we shall use the symbol $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ for the MBJ-neutrosophic set

$$
\mathcal{A}:=\left\{\left\langle x ; M_{A}(x), \tilde{B}_{A}(x), J_{A}(x)\right\rangle \mid x \in X\right\} .
$$

Let X be a $B C K$-algebra. An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X is called an MBJ-neutrosophic ideal of X ([9]) if it satisfies:

$$
(\forall x \in X)\left(\begin{array}{l}
M_{A}(0) \geq M_{A}(x) \tag{8}\\
\tilde{B}_{A}(0) \succeq \tilde{B}_{A}(x) \\
J_{A}(0) \leq J_{A}(x)
\end{array}\right)
$$

and

$$
(\forall x, y \in X)\left(\begin{array}{l}
M_{A}(x) \geq \min \left\{M_{A}(x * y), M_{A}(y)\right\} \tag{9}\\
\tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(x * y), \tilde{B}_{A}(y)\right\} \\
J_{A}(x) \leq \max \left\{J_{A}(x * y), J_{A}(y)\right\}
\end{array}\right)
$$

3. Positive implicative MBJ-neutrosophic ideals

In what follows, let X be a $B C K$-algebra unless otherwise specified.
Definition 3.1. ([4]) An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X is called a positive implicative MBJ-neutrosophic ideal of X if it satisfies (8) and

$$
(\forall x, y, z \in X)\left(\begin{array}{l}
M_{A}(x * z) \geq \min \left\{M_{A}((x * y) * z), M_{A}(y * z)\right\} \tag{10}\\
\tilde{B}_{A}(x * z) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(y * z)\right\} \\
J_{A}(x * z) \leq \max \left\{J_{A}((x * y) * z), J_{A}(y * z)\right\}
\end{array}\right)
$$

Lemma 3.2. ([4]) Every positive implicative MBJ-neutrosophic ideal is an MBJ-neutrosophic ideal, but the converse is not true.

Definition 3.3. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ and $\mathcal{B}=\left(M_{B}, \tilde{B}_{B}, J_{B}\right)$ be MBJneutrosophic sets on X. Then the intersection of \mathcal{A} and \mathcal{B} is denoted by $\mathcal{A} \cap \mathcal{B}$ and defined as

$$
\begin{equation*}
\mathcal{A} \cap \mathcal{B}=\left(M_{A \cap B}, \tilde{B}_{A \cap B}, J_{A \cap B}\right), \tag{11}
\end{equation*}
$$

where $M_{A \cap B}(x)=\min \left\{M_{A}(x), M_{B}(x)\right\}, \tilde{B}_{A \cap B}(x)=\operatorname{rmin}\left\{\tilde{B}_{A}(x), \tilde{B}_{B}(x)\right\}$, and $J_{A \cap B}(x)=\max \left\{J_{A}(x), J_{B}(x)\right\}$ for any $x \in X$.

Theorem 3.4. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ and $\mathcal{B}=\left(M_{B}, \tilde{B}_{B}, J_{B}\right)$ be positive implicative MBJ-neutrosophic ideals of X. Then $\mathcal{A} \cap \mathcal{B}$ is a positive implicative MBJ-neutrosophic ideal of X

Proof. By Lemma 3.2 and (11), the proof is straightforward.

Definition 3.5. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ and $\mathcal{B}=\left(M_{B}, \tilde{B}_{B}, J_{B}\right)$ be MBJneutrosophic sets on X. Then \mathcal{A} is contained in \mathcal{B}, denoted as $\mathcal{A} \subseteq \mathcal{B}$ and defined by $\mathcal{A}(x) \leq \mathcal{B}(x)$. This means that

$$
\begin{equation*}
M_{A}(x) \leq M_{B}(x), \tilde{B}_{A}(x) \preceq \tilde{B}_{B}, J_{A}(x) \geq J_{B}(x) \tag{12}
\end{equation*}
$$

Two MBJ-neutrosophic sets $\mathcal{A}(x)$ and $\mathcal{B}(x)$ are called equal, i.e., $\mathcal{A}(x)=\mathcal{B}(x)$ if and only if $\mathcal{A} \subseteq \mathcal{B}$ and $\mathcal{A} \supseteq \mathcal{B}$.

Theorem 3.6. Given a positive implicative ideal I of X, let $\mathcal{A}=\left(M_{A}\right.$, \tilde{B}_{A}, J_{A}) be an MBJ-neutrosophic set in X defined by

$$
\begin{gather*}
M_{A}(x)= \begin{cases}t & \text { if } x \in I \\
0 & \text { otherwise }\end{cases} \\
\tilde{B}_{A}(x)= \begin{cases}{\left[\gamma_{1}, \gamma_{2}\right]} & \text { if } x \in I \\
{[0,0]} & \text { otherwise }\end{cases} \tag{13}\\
J_{A}(x)= \begin{cases}s & \text { if } x \in I \\
1 & \text { otherwise }\end{cases}
\end{gather*}
$$

where $t \in(0,1], s \in[0,1)$ and $\gamma_{1}, \gamma_{2} \in(0,1]$ with $\gamma_{1}<\gamma_{2}$. Then \mathcal{A} is a positive implicative MBJ-neutrosophic ideal of X.

Proof. Let $x, y, z \in X$. If $(x * y) * z \in I$ and $y * z \in I$, then $x * z \in I$ and so $M_{A}(x * z)=t=\min \left\{M_{A}((x * y) * z), M_{A}(y * z)\right\}$
$\tilde{B}_{A}(x * z)=\left[\gamma_{1}, \gamma_{2}\right]=\operatorname{rmin}\left\{\left[\gamma_{1}, \gamma_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right\}=\operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(y * z)\right\}$, $J_{A}(x * z)=s=\max \left\{J_{A}((x * y) * z), J_{A}(y * z)\right\}$.
If any one of $(x * y) * z$ and $y * z$ is contained in I, say $(x * y) * z \in I$, then $M_{A}((x * y) * z)=t, \tilde{B}_{A}((x * y) * z)=\left[\gamma_{1}, \gamma_{2}\right], J_{A}((x * y) * z)=s, M_{A}(y * z)=0$, $\tilde{B}_{A}(y * z)=[0,0]$ and $J_{A}(y * z)=1$. Hence

$$
\begin{aligned}
& M_{A}(x * z) \geq 0=\min \{t, 0\}=\min \left\{M_{A}((x * y) * z), M_{A}(y * z)\right\} \\
& \tilde{B}_{A}(x * z) \succeq[0,0]=\operatorname{rmin}\left\{\left[\gamma_{1}, \gamma_{2}\right],[0,0]\right\}=\operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(y * z)\right\}, \\
& J_{A}(x * z) \leq 1=\max \{s, 1\}=\max \left\{J_{A}((x * y) * z), J_{A}(y * z)\right\}
\end{aligned}
$$

If $(x * y)_{\tilde{B}} * z, y * z \notin I$, then $M_{A}((x * y) * z)=0=M_{A}(y * z), \tilde{B}_{A}((x * y) * z)=$ $[0,0]=\tilde{B}_{A}(y * z)$ and $J_{A}((x * y) * z)=1=J_{A}(y * z)$. It follows that

$$
\begin{aligned}
& M_{A}(x * z) \geq 0=\min \{0,0\}=\min \left\{M_{A}((x * y) * z), M_{A}(y * z)\right\} \\
& \tilde{B}_{A}(x * z) \succeq[0,0]=\operatorname{rmin}\{[0,0],[0,0]\}=\operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(y * z)\right\}, \\
& J_{A}(x * z) \leq 1=\max \{1,1\}=\max \left\{J_{A}((x * y) * z), J_{A}(y * z)\right\} .
\end{aligned}
$$

It is obvious that $\mathcal{A}(0) \geq \mathcal{A}(x)$ for all $x \in X$. Therefore \mathcal{A} is a positive implicative MBJ-neutrosophic ideal of X.

Theorem 3.7. For any non-empty subset I of X, let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X which is given in (13). If \mathcal{A} is a positive implicative MBJ-neutrosophic ideal of X, then I is a positive implicative ideal of X.

Proof. Obviously, $0 \in I$. Let $x, y, z \in X$ be such that $(x * y) * z \in I$ and $y * z \in I$. Then $M_{A}((x * y) * z)=t=M_{A}(y * z), \tilde{B}_{A}((x * y) * z)=\left[\gamma_{1}, \gamma_{2}\right]=$ $\tilde{B}_{A}(y * z)$ and $J_{A}((x * y) * z)=s=J_{A}(y * z)$. Thus

$$
\begin{aligned}
& M_{A}(x * z) \geq \min \left\{M_{A}((x * y) * z), M_{A}(y * z)\right\}=t, \\
& \tilde{B}_{A}(x * z) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(y * z)\right\}=\left[\gamma_{1}, \gamma_{2}\right], \\
& J_{A}(x * z) \leq \max \left\{J_{A}((x * y) * z), J_{A}(y * z)\right\}=s,
\end{aligned}
$$

and hence $x * z \in I$. Therefore I is a positive implicative ideal of X.
Theorem 3.8. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be a positive implicative MBJneutrosophic ideal of X. Then the set

$$
K:=\{x \in X \mid \mathcal{A}(x)=\mathcal{A}(0)\}
$$

is a positive implicative ideal of X.
Proof. Clearly $0 \in K$. Let $x, y, z \in X$ be such that $(x * y) * z \in K$ and $y * z \in K$. Then

$$
\begin{aligned}
& M_{A}(x * z) \geq \min \left\{M_{A}((x * y) * z), M_{A}(y * z)\right\}=M_{A}(0), \\
& \tilde{B}_{A}(x * z) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(y * z)\right\}=\tilde{B}_{A}(0), \\
& J_{A}(x * z) \leq \max \left\{J_{A}((x * y) * z), J_{A}(y * z)\right\}=J_{A}(0),
\end{aligned}
$$

and so $\mathcal{A}(x * z) \geq \mathcal{A}(0)$. Using (8) and Definition 3.5, we have $x * z \in K$. Therefore K is a positive implicative ideal of X.

Note that an ideal might not be a positive implicative ideal ([11]), but we know that the extension property holds for positive implicative ideal in $B C K$ algebra. The next lemma decribe a distributive case of all positive implicative ideals in a $B C K$-algebra, by means of which we will obtain a nice characterization for positive implicative $B C K$-algebras by ideals.

Lemma 3.9. ([11]) Let I and A be ideals of X, and $I \subseteq A$. If I is positive implicative, then so is A.

Does Lemma 3.9 hold true for the relationship between MBJ-neutrosophic ideal and MBJ-neutrosophic positive implicative ideal? But it does not hold. Let's look at the following example.

Example 3.10. Consider a set $X=\{0,1,2, a\}$ with the binary operation * which is given in Table 1. Then $(X ; *, 0)$ is a $B C K$-algebra (see [11]). Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ and $\mathcal{B}=\left(M_{B}, \tilde{B}_{B}, J_{B}\right)$ be MBJ-neutrosophic sets in X defined by Table 2.

Table 1. Cayley table for the binary operation "*"

$*$	0	1	2	a
0	0	0	0	0
1	1	0	0	1
2	2	1	0	2
a	a	a	a	0

Table 2. MBJ-neutrosophic sets \mathcal{A} and \mathcal{B}

X	$M_{A}(x)$	$\tilde{B}_{A}(x)$	$J_{A}(x)$	$M_{B}(x)$	$\tilde{B}_{B}(x)$	$J_{B}(x)$
0	0.6	$[0.4,0.9]$	0.7	0.7	$[0.4,0.9]$	0.2
1	0.6	$[0.3,0.8]$	0.7	0.6	$[0.3,0.8]$	0.6
2	0.6	$[0.3,0.8]$	0.7	0.6	$[0.3,0.8]$	0.6
a	0.4	$[0.1,0.3]$	0.4	0.4	$[0.1,0.3]$	0.4

It is routine to verify that \mathcal{A} is a positive implicative MBJ-neutrosophic ideal of X, \mathcal{B} is an MBJ-neutrosophic ideal of X and $\mathcal{A} \subseteq \mathcal{B}$. But \mathcal{B} is not a positive implicative MBJ-neutrosophic ideal of X because

$$
M_{B}(2 * 1)=0.6<0.7=\min \left\{M_{B}((2 * 1) * 1), M_{B}(1 * 1)\right\} .
$$

Lemma 3.11. ([4]) An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X is a positive implicative MBJ-neutrosophic ideal of X if and only if it is an MBJ-neutrosophic ideal of X satisfying the following condition:

$$
\begin{equation*}
(\forall x, y, z \in X)(\mathcal{A}((x * z) *(y * z)) \geq \mathcal{A}((x * y) * z)) \tag{14}
\end{equation*}
$$

We have the following extension property for positive implicative MBJneutrosophic ideal.

Theorem 3.12. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ and $\mathcal{B}=\left(M_{B}, \tilde{B}_{B}, J_{B}\right)$ be MBJneutrosophic ideals on X such that $\mathcal{A} \subseteq \mathcal{B}$ and $M_{A}(0)=M_{B}(0), \tilde{B}_{A}(0)=$ $\tilde{B}_{B}(0), J_{A}(0)=J_{B}(0)$. If \mathcal{A} is a positive implicative MBJ-neutrosophic ideal of X, then so is \mathcal{B}.

Proof. Suppose that \mathcal{A} is a positive implicative MBJ-neutrosophic ideal of X. Let $x, y, z \in X$. Using (3), (14) and (III), we have

$$
\begin{aligned}
& M_{B}(((x * z) *(y * z)) *((x * y) * z)) \\
& \left.=M_{B}(((x * z) *((x * y) * z)) * z) *(y * z)\right) \\
& =M_{B}(((x *((x * y) * z)) * z) *(y * z)) \\
& \geq M_{A}(((x *((x * y) * z)) * z) *(y * z)) \\
& \geq M_{A}(((x *((x * y) * z)) * y) * z) \\
& =M_{A}(((x * y) *((x * y) * z)) * z) \\
& =M_{A}(((x * y) * z) *((x * y) * z)) \\
& =M_{A}(0)=M_{B}(0), \\
& \tilde{B}_{B}(((x * z) *(y * z)) *((x * y) * z)) \\
& \left.=\tilde{B}_{B}(((x * z) *((x * y) * z)) * z) *(y * z)\right) \\
& =\tilde{B}_{B}(((x *((x * y) * z)) * z) *(y * z)) \\
& \succeq \tilde{B}_{A}(((x *((x * y) * z)) * z) *(y * z)) \\
& \succeq \tilde{B}_{A}(((x *((x * y) * z)) * y) * z) \\
& =\tilde{B}_{A}(((x * y) *((x * y) * z)) * z) \\
& =\tilde{B}_{A}(((x * y) * z) *((x * y) * z)) \\
& =\tilde{B}_{A}(0)=\tilde{B}_{B}(0),
\end{aligned}
$$

and

$$
\begin{aligned}
& J_{B}(((x * z) *(y * z)) *((x * y) * z)) \\
& \left.=J_{B}(((x * z) *((x * y) * z)) * z) *(y * z)\right) \\
& =J_{B}(((x *((x * y) * z)) * z) *(y * z)) \\
& \leq J_{A}(((x *((x * y) * z)) * z) *(y * z)) \\
& \leq J_{A}(((x *((x * y) * z)) * y) * z) \\
& =J_{A}(((x * y) *((x * y) * z)) * z) \\
& =J_{A}(((x * y) * z) *((x * y) * z)) \\
& =J_{A}(0)=J_{B}(0) .
\end{aligned}
$$

It follows from (8) and (9) that

$$
\begin{aligned}
M_{B}(((x * z) *(y * z)) & \left.\geq \min \left\{M_{B}(((x * z) *(y * z)) *((x * y) * z)), M_{B}((x * y) * z)\right)\right\} \\
& \left.\left.\geq \min \left\{M_{B}(0), M_{B}((x * y) * z)\right)\right\}=M_{B}((x * y) * z)\right), \\
\tilde{B}_{B}(((x * z) *(y * z)) & \left.\succeq \min \left\{\tilde{B}_{B}(((x * z) *(y * z)) *((x * y) * z)), \tilde{B}_{B}((x * y) * z)\right)\right\} \\
& \left.\left.\succeq \min \left\{\tilde{B}_{B}(0), \tilde{B}_{B}((x * y) * z)\right)\right\}=\tilde{B}_{B}((x * y) * z)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
J_{B}(((x * z) *(y * z)) & \left.\leq \max \left\{J_{B}(((x * z) *(y * z)) *((x * y) * z)), J_{B}((x * y) * z)\right)\right\} \\
& \left.\left.\leq \max \left\{J_{B}(0), J_{B}((x * y) * z)\right)\right\}=J_{B}((x * y) * z)\right)
\end{aligned}
$$

for all $x, y, z \in X$. It follows from (14) that \mathcal{B} is a positive implicative MBJneutrosophic ideal of X.

References

[1] R. A. Borzooei, F. Smarandache, and Y. B. Jun, Positive implicative generalized neutrosophic ideals in BCK-algebras, Neutrosophic Sets and Systems, (in press).
[2] R. A. Borzooei, X. H. Zhang, F. Smarandache, and Y. B. Jun, Commutative generalized neutrosophic ideals in BCK-algebras, Symmetry 10 (2018), 350; doi:10.3390/sym10080350.
[3] Y. S. Huang, BCI-algebra, Science Press, Beijing, 2006.
[4] K. Hur, J. G. Lee, and Y. B. Jun, Positive implicative MBJ-neutrosophic ideals of $B C K / B C I$-algebras, Ann. Fuzzy Math. Inform. 17 (2019), no. 1, 65-78.
[5] Y. B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras, Ann. Fuzzy Math. Inform. 14 (2017), no. 1, 75-86.
[6] Y. B. Jun, F, Smarandache, and H. Bordbar, Neutrosophic \mathcal{N}-structures applied to $B C K / B C I$-algebras, Information 8 (2017), 128.
[7] Y. B. Jun, S. J. Kim, and F, Smarandache, Interval neutrosophic sets with applications in BCK/BCI-algebra, Axioms 7 (2018), 23.
[8] Y. B. Jun, F, Smarandache, S. Z. Song, and M. Khan, Neutrosophic positive implicative \mathcal{N}-ideals in $B C K / B C I$-algebras, Axioms 7 (2018), 3.
[9] Y. B. Jun and E. H. Roh, MBJ-neutrosophic ideals of BCK/BCI-algebras, Open Math. 17 (2019), 588-601.
[10] M. Khan, S. Anis, F. Smarandache, and Y. B. Jun, Neutrosophic \mathcal{N}-structures and their applications in semigroups, Ann. Fuzzy Math. Inform. 14 (2017), no. 6, 583-598.
[11] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, 1994.
[12] M. A. Öztürk, and Y. B. Jun, Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, J. Inter. Math. Virtual Inst. 8 (2018), 1-17.
[13] A. B. Saeid and Y. B. Jun, Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, Ann. Fuzzy Math. Inform. 14 (2017), no. 1, 87-97.
[14] A. A. Salama and S. A. Al-Blowi, Neutrosophic set and neutrosophic topological spaces, IOSR Journal of Mathematics (IOSR-JM) 3 (2012), no. 4, 31-35.
[15] F. Smarandache, Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information \& Learning, Ann Arbor, Michigan, USA, 105 p., 1998. http://fs.gallup.unm.edu/eBook-neutrosophic s6.pdf (last edition online).
[16] F. Smarandache, A unifying field in logics. Neutrosophy: Neutrosophic probability, set and logic, Rehoboth: American Research Press, 1999.
[17] F. Smarandache, Neutrosophic set, a generalization of intuFionistic fuzzy sets, International Journal of Pure and Applied Mathematics 24 (2005), no. 5, 287-297.
[18] S. Z. Song, F. Smarandache, and Y. B. Jun, Neutrosophic commutative \mathcal{N}-ideals in BCK-algebras, Information 8 (2017), 130.
[19] S. Z. Song, M. Khan, F. Smarandache, and Y. B. Jun, A novel extension of neutrosophic sets and Fs application in BCK/BI-algebras, New Trends in Neutrosophic Theory and Applications (Volume II), 308-326, Pons Editions, Brussels, Belium, EU, 2018.
[20] M. Mohseni Takallo,R. A. Borzooei, and Y. B. Jun, MBJ-neutrosophic structures and its applications in BCK/BCI-algebras, Neutrosophic Sets and Systems, (in press).
[21] H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, Single valued neutrosophic sets, Multisspace and Multistructure 4 (2010), 410-413.
[22] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), no. 3, 338-353.

Eun Hwan Roh
Department of Mathematics Education,
Chinju National University of Education,
Jinju 52673, Korea.
E-mail: ehroh9988@gmail.com

[^0]: Received November 11, 2021. Accepted March 11, 2022.
 2010 Mathematics Subject Classification. 06F35, 03G25, 03E72.
 Key words and phrases. MBJ-neutrosophic set, (positive implicative) MBJ-neutrosophic ideal, extension property for positive implicative MBJ-neutrosophic ideal.

 This paper was supported by the research fund in Chinju National University of Education, 2021.

