Honam Mathematical J. **44** (2022), No. 2, pp. 209–218 https://doi.org/10.5831/HMJ.2022.44.2.209

POSITIVE IMPLICATIVE MBJ-NEUTROSOPHIC IDEALS IN BCK-ALGEBRAS

EUN HWAN ROH

Abstract. The notion of positive implicative MBJ-neutosophic ideal of BCK-algebras is defined and some properties of it are investigated. Relations between positive implicative MBJ-neutrosophic ideal and positive implicative ideal are discussed. In a BCK-algebra, the extension property for positive implicative MBJ-neutrosophic ideal is established.

1. Introduction

In order to handle uncertainties in many real applications, the fuzzy set was introduced by L.A. Zadeh [22] in 1965. The intuitionistic fuzzy set on a universe X was introduced by K. Atanassov in 1983 as a generalization of fuzzy set. As a more general platform that extends the notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set, the notion of neutrosophic set is developed by Smarandache ([15]-[17]). Neutrosophic algebraic structures in BCK/BCI-algebras are discussed in the papers [1]–[18]. In [20], the notion of MBJ-neutrosophic sets is introduced as another generalization of neutrosophic set, it is applied to BCK/BCI-algebras. Mohseni et al. [20] introduced the concept of MBJ-neutrosophic subalgebras in BCK/BCI-algebras, and investigated related properties. They gave a characterization of MBJneutrosophic subalgebra, and established a new MBJ-neutrosophic subalgebra by using an MBJ-neutrosophic subalgebra of a BCI-algebra. They considered the homomorphic inverse image of MBJ-neutrosophic subalgebra, and discussed translation of MBJ-neutrosophic subalgebra. Jun and Roh [9] applied the notion of MBJ-neutrosophic sets to ideals of BCK/BI-algebras. They introduced the concept of MBJ-neutrosophic ideals in BCK/BCI-algebras, and investigated several properties. They provided a condition for an MBJ-neutrosophic subalgebra to be an MBJ-neutrosophic ideal in a BCK-algebra. They provided conditions for an MBJ-neutrosophic set to be an MBJ-neutrosophic ideal in a

Received November 11, 2021. Accepted March 11, 2022.

²⁰¹⁰ Mathematics Subject Classification. 06F35, 03G25, 03E72.

Key words and phrases. MBJ-neutrosophic set, (positive implicative) MBJ-neutrosophic ideal, extension property for positive implicative MBJ-neutrosophic ideal.

This paper was supported by the research fund in Chinju National University of Education, 2021.

BCK/BCI-algebra. They discussed relations between MBJ-neutrosophic subalgebras, MBJ-neutrosophic o-subalgebras and MBJ-neutrosophic ideals. In a BCI-algebra, they provided conditions for an MBJ-neutrosophic ideal to be an MBJ-neutrosophic subalgebra. In an (S)-BCK-algebra, they considered a characterization of an MBJ-neutrosophic ideal. Hur et al. [4] introduced the notion of positive implicative MBJ-neutrosophic ideal, and investigated several properties. They discussed relations between MBJ-neutrosophic ideal and positive implicative MBJ-neutrosophic ideal. They provided characterizations of positive implicative MBJ-neutrosophic ideal.

In this paper, we apply the notion of MBJ-neutrosophic sets to positive implicative MBJ-neutrosophic ideals of BCK-algebras, and investigate some properties. We discuss relations between positive implicative MBJ-neutrosophic ideals and positive implicative ideals in BCK-algebra. In a BCK-algebra, the extension property for positive implicative MBJ-neutrosophic ideal is established.

2. Preliminaries

By a BCK-algebra, we mean a set X with a binary operation * and a special element 0 that satisfies the following conditions:

- (I) ((x * y) * (x * z)) * (z * y) = 0,
- (II) (x * (x * y)) * y = 0,
- $(\text{III}) \ x * x = 0,$
- $(\mathrm{IV}) \ x \ast y = 0, \ y \ast x = 0 \ \Rightarrow \ x = y,$

(V)
$$(\forall x \in X) (0 * x = 0)$$

for all $x, y, z \in X$.

Every BCK-algebra X satisfies the following conditions:

(1) $(\forall x \in X) (x * 0 = x),$

(2)
$$(\forall x, y, z \in X) (x \le y \Rightarrow x * z \le y * z, z * y \le z * x),$$

(3) $(\forall x, y, z \in X) ((x * y) * z = (x * z) * y),$

(4)
$$(\forall x, y, z \in X) ((x * z) * (y * z) \le x * y)$$

where $x \leq y$ if and only if x * y = 0.

A subset I of a BCK-algebra X is called an *ideal* of X if it satisfies:

 $(5) 0 \in I,$

(6)
$$(\forall x \in X) (\forall y \in I) (x * y \in I \Rightarrow x \in I).$$

A subset I of a *BCK*-algebra X is called a *positive implicative ideal* of X if it satisfies (5) and

(7) $(\forall x, y, z \in X) ((x * y) * z \in I, y * z \in I \implies x * z \in I).$

Any positive implicative ideal must be an ideal, but the inverse is not true ([11]).

By an *interval number* we mean a closed subinterval $\tilde{a} = [a^-, a^+]$ of I, where $0 \le a^- \le a^+ \le 1$. Denote by [I] the set of all interval numbers. Let us define what is known as *refined minimum* (briefly, rmin) and *refined maximum* (briefly, rmax) of two elements in [I]. We also define the symbols " \succeq ", " \preceq ", "=" in case of two elements in [I]. Consider two interval numbers $\tilde{a}_1 := [a_1^-, a_1^+]$ and $\tilde{a}_2 := [a_2^-, a_2^+]$. Then

$$\min\{\tilde{a}_1, \tilde{a}_2\} = \left[\min\{a_1^-, a_2^-\}, \min\{a_1^+, a_2^+\}\right], \\ \max\{\tilde{a}_1, \tilde{a}_2\} = \left[\max\{a_1^-, a_2^-\}, \max\{a_1^+, a_2^+\}\right], \\ \tilde{a}_1 \succeq \tilde{a}_2 \iff a_1^- \ge a_2^-, a_1^+ \ge a_2^+,$$

and similarly we may have $\tilde{a}_1 \leq \tilde{a}_2$ and $\tilde{a}_1 = \tilde{a}_2$. To say $\tilde{a}_1 \succ \tilde{a}_2$ (resp. $\tilde{a}_1 \prec \tilde{a}_2$) we mean $\tilde{a}_1 \succeq \tilde{a}_2$ and $\tilde{a}_1 \neq \tilde{a}_2$ (resp. $\tilde{a}_1 \leq \tilde{a}_2$ and $\tilde{a}_1 \neq \tilde{a}_2$). Let $\tilde{a}_i \in [I]$ where $i \in \Lambda$. We define

$$\inf_{i \in \Lambda} \tilde{a}_i = \left[\inf_{i \in \Lambda} a_i^-, \inf_{i \in \Lambda} a_i^+ \right] \quad \text{and} \quad \sup_{i \in \Lambda} \tilde{a}_i = \left[\sup_{i \in \Lambda} a_i^-, \sup_{i \in \Lambda} a_i^+ \right].$$

Let X be a nonempty set. A function $A: X \to [I]$ is called an *interval-valued fuzzy set* (briefly, an IVF set) in X. Let $[I]^X$ stand for the set of all IVF sets in X. For every $A \in [I]^X$ and $x \in X$, $A(x) = [A^-(x), A^+(x)]$ is called the *degree* of membership of an element x to A, where $A^-: X \to I$ and $A^+: X \to I$ are fuzzy sets in X which are called a *lower fuzzy set* and an *upper fuzzy set* in X, respectively. For simplicity, we denote $A = [A^-, A^+]$.

Let X be a non-empty set. A *neutrosophic set* in X (see [16], [14], [21]) is a structure of the form:

$$A := \{ \langle x; A_T(x), A_I(x), A_F(x) \rangle \mid x \in X \}$$

where $A_T : X \to [0, 1]$ is a truth membership function, $A_I : X \to [0, 1]$ is an indeterminate membership function, and $A_F : X \to [0, 1]$ is a false membership function. For the sake of simplicity, we shall use the symbol $A = (A_T, A_I, A_F)$ for the neutrosophic set

$$A := \{ \langle x; A_T(x), A_I(x), A_F(x) \rangle \mid x \in X \}.$$

We refer the reader to the books [3, 11] for further information regarding BCK/BCI-algebras, and to the site "http://fs.gallup.unm.edu/neutrosophy.htm" for further information regarding neutrosophic set theory.

Let X be a non-empty set. By an *MBJ-neutrosophic set* in X (see [20]), we mean a structure of the form:

$$\mathcal{A} := \{ \langle x; M_A(x), \tilde{B}_A(x), J_A(x) \rangle \mid x \in X \}$$

where M_A and J_A are fuzzy sets in X, which are called a truth membership function and a false membership function, respectively, and \tilde{B}_A is an IVF set in X which is called an indeterminate interval-valued membership function.

For the sake of simplicity, we shall use the symbol $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ for the MBJ-neutrosophic set

$$\mathcal{A} := \{ \langle x; M_A(x), \dot{B}_A(x), J_A(x) \rangle \mid x \in X \}.$$

Let X be a *BCK*-algebra. An MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ in X is called an *MBJ-neutrosophic ideal* of X ([9]) if it satisfies:

(8)
$$(\forall x \in X) \begin{pmatrix} M_A(0) \ge M_A(x) \\ \tilde{B}_A(0) \succeq \tilde{B}_A(x) \\ J_A(0) \le J_A(x) \end{pmatrix}$$

and

(9)
$$(\forall x, y \in X) \begin{pmatrix} M_A(x) \ge \min\{M_A(x * y), M_A(y)\}\\ \tilde{B}_A(x) \succeq \min\{\tilde{B}_A(x * y), \tilde{B}_A(y)\}\\ J_A(x) \le \max\{J_A(x * y), J_A(y)\} \end{pmatrix}.$$

3. Positive implicative MBJ-neutrosophic ideals

In what follows, let X be a BCK-algebra unless otherwise specified.

Definition 3.1. ([4]) An MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ in X is called a positive implicative MBJ-neutrosophic ideal of X if it satisfies (8) and

(10)
$$(\forall x, y, z \in X) \begin{pmatrix} M_A(x * z) \ge \min\{M_A((x * y) * z), M_A(y * z)\} \\ \tilde{B}_A(x * z) \succeq \min\{\tilde{B}_A((x * y) * z), \tilde{B}_A(y * z)\} \\ J_A(x * z) \le \max\{J_A((x * y) * z), J_A(y * z)\} \end{pmatrix}$$

Lemma 3.2. ([4]) Every positive implicative MBJ-neutrosophic ideal is an MBJ-neutrosophic ideal, but the converse is not true.

Definition 3.3. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ and $\mathcal{B} = (M_B, \tilde{B}_B, J_B)$ be MBJneutrosophic sets on X. Then the intersection of \mathcal{A} and \mathcal{B} is denoted by $\mathcal{A} \cap \mathcal{B}$ and defined as

(11)
$$\mathcal{A} \cap \mathcal{B} = (M_{A \cap B}, \tilde{B}_{A \cap B}, J_{A \cap B}),$$

where $M_{A \cap B}(x) = \min\{M_A(x), M_B(x)\}, \ \tilde{B}_{A \cap B}(x) = \min\{\tilde{B}_A(x), \tilde{B}_B(x)\},\$ and $J_{A \cap B}(x) = \max\{J_A(x), J_B(x)\}$ for any $x \in X$.

Theorem 3.4. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ and $\mathcal{B} = (M_B, \tilde{B}_B, J_B)$ be positive implicative MBJ-neutrosophic ideals of X. Then $\mathcal{A} \cap \mathcal{B}$ is a positive implicative MBJ-neutrosophic ideal of X

Proof. By Lemma 3.2 and (11), the proof is straightforward.

Definition 3.5. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ and $\mathcal{B} = (M_B, \tilde{B}_B, J_B)$ be MBJneutrosophic sets on X. Then \mathcal{A} is contained in \mathcal{B} , denoted as $\mathcal{A} \subseteq \mathcal{B}$ and defined by $\mathcal{A}(x) \leq \mathcal{B}(x)$. This means that

(12)
$$M_A(x) \le M_B(x), \tilde{B}_A(x) \le \tilde{B}_B, J_A(x) \ge J_B(x).$$

Two MBJ-neutrosophic sets $\mathcal{A}(x)$ and $\mathcal{B}(x)$ are called equal, i.e., $\mathcal{A}(x) = \mathcal{B}(x)$ if and only if $\mathcal{A} \subseteq \mathcal{B}$ and $\mathcal{A} \supseteq \mathcal{B}$.

Theorem 3.6. Given a positive implicative ideal I of X, let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in X defined by

(13)
$$M_A(x) = \begin{cases} t & \text{if } x \in I, \\ 0 & \text{otherwise,} \end{cases}$$
$$\tilde{B}_A(x) = \begin{cases} [\gamma_1, \gamma_2] & \text{if } x \in I, \\ [0,0] & \text{otherwise,} \end{cases}$$
$$J_A(x) = \begin{cases} s & \text{if } x \in I, \\ 1 & \text{otherwise,} \end{cases}$$

where $t \in (0, 1]$, $s \in [0, 1)$ and $\gamma_1, \gamma_2 \in (0, 1]$ with $\gamma_1 < \gamma_2$. Then \mathcal{A} is a positive implicative MBJ-neutrosophic ideal of X.

Proof. Let $x, y, z \in X$. If $(x * y) * z \in I$ and $y * z \in I$, then $x * z \in I$ and so $M_A(x * z) = t = \min\{M_A((x * y) * z), M_A(y * z)\}$ $\tilde{B}_A(x * z) = [\gamma_1, \gamma_2] = \min\{[\gamma_1, \gamma_2], [\gamma_1, \gamma_2]\} = \min\{\tilde{B}_A((x * y) * z), \tilde{B}_A(y * z)\},$ $J_A(x * z) = s = \max\{J_A((x * y) * z), J_A(y * z)\}.$

If any one of (x * y) * z and y * z is contained in I, say $(x * y) * z \in I$, then $M_A((x*y)*z) = t$, $\tilde{B}_A((x*y)*z) = [\gamma_1, \gamma_2]$, $J_A((x*y)*z) = s$, $M_A(y*z) = 0$, $\tilde{B}_A(y*z) = [0, 0]$ and $J_A(y*z) = 1$. Hence

$$\begin{split} M_A(x*z) &\geq 0 = \min\{t, 0\} = \min\{M_A((x*y)*z), M_A(y*z)\}\\ \tilde{B}_A(x*z) &\succeq [0, 0] = \min\{[\gamma_1, \gamma_2], [0, 0]\} = \min\{\tilde{B}_A((x*y)*z), \tilde{B}_A(y*z)\},\\ J_A(x*z) &\leq 1 = \max\{s, 1\} = \max\{J_A((x*y)*z), J_A(y*z)\}. \end{split}$$

If $(x * y) * z, y * z \notin I$, then $M_A((x * y) * z) = 0 = M_A(y * z), \tilde{B}_A((x * y) * z) = [0, 0] = \tilde{B}_A(y * z)$ and $J_A((x * y) * z) = 1 = J_A(y * z)$. It follows that

$$\begin{split} M_A(x*z) &\geq 0 = \min\{0,0\} = \min\{M_A((x*y)*z), M_A(y*z)\}\\ \tilde{B}_A(x*z) &\succeq [0,0] = \min\{[0,0], [0,0]\} = \min\{\tilde{B}_A((x*y)*z), \tilde{B}_A(y*z)\},\\ J_A(x*z) &\leq 1 = \max\{1,1\} = \max\{J_A((x*y)*z), J_A(y*z)\}. \end{split}$$

It is obvious that $\mathcal{A}(0) \geq \mathcal{A}(x)$ for all $x \in X$. Therefore \mathcal{A} is a positive implicative MBJ-neutrosophic ideal of X.

Theorem 3.7. For any non-empty subset I of X, let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in X which is given in (13). If \mathcal{A} is a positive implicative MBJ-neutrosophic ideal of X, then I is a positive implicative ideal of X.

Proof. Obviously, $0 \in I$. Let $x, y, z \in X$ be such that $(x * y) * z \in I$ and $y * z \in I$. Then $M_A((x * y) * z) = t = M_A(y * z)$, $\tilde{B}_A((x * y) * z) = [\gamma_1, \gamma_2] = \tilde{B}_A(y * z)$ and $J_A((x * y) * z) = s = J_A(y * z)$. Thus

$$M_A(x * z) \ge \min\{M_A((x * y) * z), M_A(y * z)\} = t,$$

$$\tilde{B}_A(x * z) \succeq \min\{\tilde{B}_A((x * y) * z), \tilde{B}_A(y * z)\} = [\gamma_1, \gamma_2],$$

$$J_A(x * z) \le \max\{J_A((x * y) * z), J_A(y * z)\} = s,$$

and hence $x * z \in I$. Therefore I is a positive implicative ideal of X.

Theorem 3.8. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be a positive implicative MBJneutrosophic ideal of X. Then the set

$$K := \{ x \in X | \mathcal{A}(x) = \mathcal{A}(0) \}$$

is a positive implicative ideal of X.

Proof. Clearly $0 \in K$. Let $x, y, z \in X$ be such that $(x * y) * z \in K$ and $y * z \in K$. Then

$$M_A(x*z) \ge \min\{M_A((x*y)*z), M_A(y*z)\} = M_A(0), \\ \tilde{B}_A(x*z) \succeq \min\{\tilde{B}_A((x*y)*z), \tilde{B}_A(y*z)\} = \tilde{B}_A(0), \\ J_A(x*z) \le \max\{J_A((x*y)*z), J_A(y*z)\} = J_A(0),$$

and so $\mathcal{A}(x * z) \geq \mathcal{A}(0)$. Using (8) and Definition 3.5, we have $x * z \in K$. Therefore K is a positive implicative ideal of X.

Note that an ideal might not be a positive implicative ideal ([11]), but we know that the extension property holds for positive implicative ideal in BCK-algebra. The next lemma decribe a distributive case of all positive implicative ideals in a BCK-algebra, by means of which we will obtain a nice characterization for positive implicative BCK-algebras by ideals.

Lemma 3.9. ([11]) Let I and A be ideals of X, and $I \subseteq A$. If I is positive implicative, then so is A.

Does Lemma 3.9 hold true for the relationship between MBJ-neutrosophic ideal and MBJ-neutrosophic positive implicative ideal? But it does not hold. Let's look at the following example.

Example 3.10. Consider a set $X = \{0, 1, 2, a\}$ with the binary operation * which is given in Table 1. Then (X; *, 0) is a BCK-algebra (see [11]). Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ and $\mathcal{B} = (M_B, \tilde{B}_B, J_B)$ be MBJ-neutrosophic sets in X defined by Table 2.

*	0	1	2	a
0	0	0	0	0
1	1	0	0	1
2	2	1	0	2
a	a	a	a	0

TABLE 1. Cayley table for the binary operation "*"

TABLE 2. MBJ-neutrosophic sets \mathcal{A} and \mathcal{B}

X	$M_A(x)$	$\tilde{B}_A(x)$	$J_A(x)$	$M_B(x)$	$\tilde{B}_B(x)$	$J_B(x)$
0	0.6	[0.4, 0.9]	0.7	0.7	[0.4, 0.9]	0.2
1	0.6	[0.3, 0.8]	0.7	0.6	[0.3, 0.8]	0.6
2	0.6	[0.3, 0.8]	0.7	0.6	[0.3, 0.8]	0.6
a	0.4	[0.1, 0.3]	0.4	0.4	[0.1, 0.3]	0.4

It is routine to verify that \mathcal{A} is a positive implicative MBJ-neutrosophic ideal of X, \mathcal{B} is an MBJ-neutrosophic ideal of X and $\mathcal{A} \subseteq \mathcal{B}$. But \mathcal{B} is not a positive implicative MBJ-neutrosophic ideal of X because

$$M_B(2*1) = 0.6 < 0.7 = \min\{M_B((2*1)*1), M_B(1*1)\}.$$

Lemma 3.11. ([4]) An MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ in X is a positive implicative MBJ-neutrosophic ideal of X if and only if it is an MBJ-neutrosophic ideal of X satisfying the following condition:

(14)
$$(\forall x, y, z \in X)(\mathcal{A}((x * z) * (y * z)) \ge \mathcal{A}((x * y) * z))$$

We have the following extension property for positive implicative MBJneutrosophic ideal.

Theorem 3.12. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ and $\mathcal{B} = (M_B, \tilde{B}_B, J_B)$ be MBJneutrosophic ideals on X such that $\mathcal{A} \subseteq \mathcal{B}$ and $M_A(0) = M_B(0), \tilde{B}_A(0) = \tilde{B}_B(0), J_A(0) = J_B(0)$. If \mathcal{A} is a positive implicative MBJ-neutrosophic ideal of X, then so is \mathcal{B} .

Proof. Suppose that \mathcal{A} is a positive implicative MBJ-neutrosophic ideal of X. Let $x, y, z \in X$. Using (3), (14) and (III), we have

$$\begin{split} &M_B(((x*z)*(y*z))*((x*y)*z))\\ &= M_B(((x*z)*((x*y)*z))*z)*(y*z))\\ &= M_B(((x*((x*y)*z))*z)*(y*z))\\ &\geq M_A(((x*((x*y)*z))*z)*(y*z))\\ &\geq M_A(((x*((x*y)*z))*y)*z)\\ &= M_A(((x*y)*z)*((x*y)*z))*z)\\ &= M_A(((x*y)*z)*((x*y)*z))\\ &= M_A(0) = M_B(0),\\ &\tilde{B}_B(((x*z)*(y*z))*((x*y)*z))*z)*(y*z))\\ &= \tilde{B}_B(((x*((x*y)*z))*z)*(y*z))\\ &\geq \tilde{B}_A(((x*((x*y)*z))*z)*(y*z))\\ &\succeq \tilde{B}_A(((x*((x*y)*z))*z)*(y*z))\\ &\geq \tilde{B}_A(((x*((x*y)*z))*z)*(y*z))\\ &= \tilde{B}_A(((x*y)*z))*z)*(x*y)*z)\\ &= \tilde{B}_A(((x*y)*z)*((x*y)*z))*z)\\ &= \tilde{B}_A(((x*y)*z)*((x*y)*z))\\ &= \tilde{B}_A(((x*y)*z)*((x*y)*z))\\ &= \tilde{B}_A(0) = \tilde{B}_B(0), \end{split}$$

and

$$\begin{split} &J_B(((x*z)*(y*z))*((x*y)*z))\\ &=J_B(((x*z)*((x*y)*z))*z)*(y*z))\\ &=J_B(((x*((x*y)*z))*z)*(y*z))\\ &\leq J_A(((x*((x*y)*z))*z)*(y*z))\\ &\leq J_A(((x*((x*y)*z))*y)*z)\\ &=J_A(((x*y)*((x*y)*z))*z)\\ &=J_A(((x*y)*z)*((x*y)*z))\\ &=J_A(((x*y)*z)*((x*y)*z))\\ &=J_A(0)=J_B(0). \end{split}$$

It follows from (8) and (9) that

$$M_B(((x*z)*(y*z)) \ge \min\{M_B(((x*z)*(y*z))*((x*y)*z)), M_B((x*y)*z))\} \\\ge \min\{M_B(0), M_B((x*y)*z))\} = M_B((x*y)*z)),$$

$$\tilde{B}_B(((x*z)*(y*z)) \succeq \min\{\tilde{B}_B(((x*z)*(y*z))*((x*y)*z)), \tilde{B}_B((x*y)*z))\} \\ \succeq \min\{\tilde{B}_B(0), \tilde{B}_B((x*y)*z))\} = \tilde{B}_B((x*y)*z)),$$

and

$$J_B(((x*z)*(y*z)) \le \max\{J_B(((x*z)*(y*z))*((x*y)*z)), J_B((x*y)*z))\} \le \max\{J_B(0), J_B((x*y)*z))\} = J_B((x*y)*z))$$

for all $x, y, z \in X$. It follows from (14) that \mathcal{B} is a positive implicative MBJneutrosophic ideal of X.

References

- R. A. Borzooei, F. Smarandache, and Y. B. Jun, *Positive implicative generalized neu*trosophic ideals in BCK-algebras, Neutrosophic Sets and Systems, (in press).
- [2] R. A. Borzooei, X. H. Zhang, F. Smarandache, and Y. B. Jun, Commutative generalized neutrosophic ideals in BCK-algebras, Symmetry 10 (2018), 350; doi:10.3390/sym10080350.
- [3] Y. S. Huang, BCI-algebra, Science Press, Beijing, 2006.
- [4] K. Hur, J. G. Lee, and Y. B. Jun, Positive implicative MBJ-neutrosophic ideals of BCK/BCI-algebras, Ann. Fuzzy Math. Inform. 17 (2019), no. 1, 65–78.
- Y. B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras, Ann. Fuzzy Math. Inform. 14 (2017), no. 1, 75–86.
- [6] Y. B. Jun, F. Smarandache, and H. Bordbar, Neutrosophic N-structures applied to BCK/BCI-algebras, Information 8 (2017), 128.
- [7] Y. B. Jun, S. J. Kim, and F. Smarandache, Interval neutrosophic sets with applications in BCK/BCI-algebra, Axioms 7 (2018), 23.
- [8] Y. B. Jun, F, Smarandache, S. Z. Song, and M. Khan, Neutrosophic positive implicative *N*-ideals in BCK/BCI-algebras, Axioms 7 (2018), 3.
- Y. B. Jun and E. H. Roh, *MBJ-neutrosophic ideals of BCK/BCI-algebras*, Open Math. 17 (2019), 588–601.
- [10] M. Khan, S. Anis, F. Smarandache, and Y. B. Jun, Neutrosophic N-structures and their applications in semigroups, Ann. Fuzzy Math. Inform. 14 (2017), no. 6, 583–598.
- [11] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, 1994.
- [12] M. A. Öztürk, and Y. B. Jun, Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, J. Inter. Math. Virtual Inst. 8 (2018), 1–17.
- [13] A. B. Saeid and Y. B. Jun, Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, Ann. Fuzzy Math. Inform. 14 (2017), no. 1, 87–97.
- [14] A. A. Salama and S. A. Al-Blowi, Neutrosophic set and neutrosophic topological spaces, IOSR Journal of Mathematics (IOSR-JM) 3 (2012), no. 4, 31–35.
- [15] F. Smarandache, Neutrosophy, Neutrosophic Probability, Set, and Logic, Pro-Quest Information & Learning, Ann Arbor, Michigan, USA, 105 p., 1998. http://fs.gallup.unm.edu/eBook-neutrosophic s6.pdf (last edition online).
- [16] F. Smarandache, A unifying field in logics. Neutrosophy: Neutrosophic probability, set and logic, Rehoboth: American Research Press, 1999.
- [17] F. Smarandache, Neutrosophic set, a generalization of intuFionistic fuzzy sets, International Journal of Pure and Applied Mathematics 24 (2005), no. 5, 287–297.
- [18] S. Z. Song, F. Smarandache, and Y. B. Jun, Neutrosophic commutative N-ideals in BCK-algebras, Information 8 (2017), 130.
- [19] S. Z. Song, M. Khan, F. Smarandache, and Y. B. Jun, A novel extension of neutrosophic sets and Fs application in BCK/BI-algebras, New Trends in Neutrosophic Theory and Applications (Volume II), 308–326, Pons Editions, Brussels, Belium, EU, 2018.
- [20] M. Mohseni Takallo, R. A. Borzooei, and Y. B. Jun, *MBJ-neutrosophic structures and its applications in BCK/BCI-algebras*, Neutrosophic Sets and Systems, (in press).

- [21] H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, Single valued neutrosophic sets, Multisspace and Multistructure 4 (2010), 410–413.
 [22] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), no. 3, 338–353.

Eun Hwan Roh Department of Mathematics Education, Chinju National University of Education, Jinju 52673, Korea. E-mail: ehroh9988@gmail.com