DOI QR코드

DOI QR Code

Elastic shell model: Effect of Young's Modulus on the vibration of double-walled CNTs

  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Asghar, Sehar (Department of Mathematics, Govt. College University Faisalabad) ;
  • Khadimallah, Mohamed Amine (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Banoqitah, Essam Mohammed (Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Loukil, Hassen (Department of Electrical Engineering, College of Engineering, King Khalid University) ;
  • Ali, Imam (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Mahmoud, S.R. (GRC Department, Faculty of Applied studies, King Abdulaziz University) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2020.06.24
  • Accepted : 2022.06.07
  • Published : 2022.06.25

Abstract

In this paper, vibrational attributes of double-walled carbon nanotubes (CNTs) has been studied based upon nonlocal elastic shell theory. The implication of small scale is being perceived by establishing nonlocal Love shell model. The wave propagation approach has been operated to frame the governing equations as eigen value system. The comparison of local and nonlocal model has been overtly explored by means of scaling parameter. An appropriate selection of material properties and nonlocal parameter has been considered. The influence of changing mechanical parameter Young's modulus has been studied in detail. The dominance of end condition via nonlocal parameter is explained graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number (RGP.2/155/43).

References

  1. Alibeigloo, A. and Shaban, M. (2013). "Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity", Acta Mechanica, 224(7), 1415-1427. https://doi.org/10.1007/s00707-013-0817-2.
  2. Ansari, R., Hemmatnezhad, M. and Rezapour, J. (2011), "The thermal effect on nonlinear oscillations of carbon nanotubes with arbitrary boundary conditions", Curr. Appl. Phys., 11(3), 692-697. https://doi.org/10.1016/j.cap.2010.11.034.
  3. Avcar M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  4. Basirjafari, S., Esmaeilzadeh Khadem, S. and Malekfar, R. (2013), "Validation of shell theory for modeling the radial breathing mode of a single-walled carbon nanotube", Int. J. Eng. Trans. A, 26(4), 447-454.
  5. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147.
  6. Budiansky, B. (1963), "On the'best'first-order linear shell theory", The Prager Anniversary Volume-Progress in Applied Mechanics.
  7. Cirak, F., Ortiz, M. and Pandolfi, A. (2005), "A cohesive approach to thin-shell fracture and fragmentation", Comput. Meth. Appl. Mech. Eng., 194(21-24), 2604-2618. https://doi.org/10.1016/j.cma.2004.07.048.
  8. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
  9. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Science and Business Media, New York.
  10. Fakhrabadi, M.M.S., Rastgoo, A. and Ahmadian, M.T. (2015), "Application of electrostatically actuated carbon nanotubes in nanofluidic and bio-nanofluidic sensors and actuators", Measure., 73, 127-136. https://doi.org/10.1016/j.measurement.2015.05.009.
  11. Fu, Y.M., Hong, J.W. and Wang, X.Q. (2006), "Analysis of nonlinear vibration for embedded carbon nanotubes", J. Sound Vib., 296(4-5), 746-756. https://doi.org/10.1016/j.jsv.2006.02.024.
  12. Hernandez, E., Goze, C., Bemier, P. and Rubio, A. (1998), "Elastic properties of C and BxCyNz composite nanotubes", Phys. Rev. Lett., 80, 4502-505. https://doi.org/10.1103/PhysRevLett.80.4502.
  13. Hussain, M. and Naeem, M.N. (2019b), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B: Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
  14. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(1), 56-58. https://doi.org/10.1038/354056a0.
  15. Iijima, S., Brabec, C., Maiti, A., Bemholc, J. (1996), "Structural flexibility of carbon nanotubes", J. Chem. Phys., 104(5), 2089-2092. https://doi.org/10.1063/1.470966.
  16. Karami B, Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
  17. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
  18. Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solid. Struct., 40(10), 2487-249992. https://doi.org/10.1016/S0020-7683(03)00056-8.
  19. Liew, K.M. and Wang, Q. (2007), "Analysis of wave propagation in carbon nanotubes via elastic shell theories", Int. J. Eng. Sci., 45(2-8), 227-241. https://doi.org/10.1016/j.ijengsci.2007.04.001.
  20. Love, A.E.H. (1888), "The small free vibrations and deformation of a thin elastic shell", Proc. Roy. Soc. London Ser. I, 43, 352-353. https://doi.org/10.1098/rspl.1887.0146
  21. Love, A.E.H. (2013), A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press.
  22. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  23. Markus, S. (1988), Mechanics of Vibrations of Cylindrical Shells, Amsterdam.
  24. Mehar, K. and Panda, S.K. (2016a), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038
  25. Mehar, K. and Panda, S.K. (2016b), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", IOP Conf. Ser.: Mater. Sci. Eng., 115(1), 012014. https://doi.org/10.1088/1757-899X/115/1/012014
  26. Mehar, K. and Panda, S.K. (2018a), "Dynamic response of functionally graded carbon nanotube reinforced sandwich plate", IOP Conf. Ser.: Mater. Sci. Eng., 338(1), 012017. https://doi.org/10.1088/1757-899X/338/1/012017
  27. Mehar, K. and Panda, S.K. (2018b), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266.
  28. Mehar, K. and Panda, S.K. (2018c), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol., 37(6), 1643-1657. https://doi.org/10.1002/adv.21821.
  29. Mehar, K. and Panda, S.K. (2018d), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircraft Eng. Aerosp. Technol., 90(1), 11-23. https://doi.org/10.1108/AEAT11-2015-0237.
  30. Mehar, K. and Panda, S.K. (2018e), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565.
  31. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181. https://doi.org/10.12989/anr.2019.9.3.181.
  32. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018a), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
  33. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.-A/Solid., 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
  34. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017c), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057.
  35. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Scientia Iranica, 25(5), 2722-2737.
  36. Mehar, K., Panda, S.K. and Patle, B.K. (2017d), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(04), 1750046. https://doi.org/10.1142/S1758825117500466.
  37. Mehar, K., Panda, S.K. and Patle, B.K. (2018c), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
  38. Mehar, K., Panda, S.K. andMahapatra, T.R. (2018d), "Nonlinear frequency responses of functionally graded carbon nanotube-reinforced sandwich curved panel under uniform temperature field", Int. J. Appl Mech., 10(03), 1850028. https://doi.org/10.1142/S175882511850028X.
  39. Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017b), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Therm. Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689.
  40. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.
  41. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  42. Moradi-Dastjerdi, R. and Payganeh, G. (2017), "Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions", Steel Compos. Struct., 24(3), 359-367. https://doi.org/10.12989/scs.2017.24.3.359.
  43. Qian, D., Wagner, G.J., Liu, W.K., Yu, M.F. and Ruoff, R.S. (2002), "Mechanics of carbon nanotubes", Appl. Mech. Rev., 55(6), 495-533. https://doi.org/10.1115/1.1490129.
  44. Rabczuk, T., Areias, P.M.A. and Belytschko, T. (2007), "A meshfree thin shell method for non-linear dynamic fracture", Int. J. Numer. Meth. Eng., 72(5), 524-548. https://doi.org/10.1002/nme.2013.
  45. Rayleigh, L. (1882), "On the equilibrium of liquid conducting masses charged with electricity", London, Edinburgh, Dublin Philos. Mag. J. Sci., 14(87), 184-186. https://doi.org/10.1080/14786448208628425
  46. Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A. and Ordejon, P. (1999), "Ab-initio structural, elastic, and vibrational properties of carbon nanotubes", Phys. Rev. B, 59, 12678-2688. http://doi.org/10.1103/PhysRevB.59.12678.
  47. Simsek M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
  48. Soldano, C. (2015), "Hybrid metal-based carbon nanotubes", "Novel platform for multifunctional applications", Prog. Mater. Sci., 69, 183-212. https://doi.org/10.1016/j.pmatsci.2014.11.001.
  49. Sosa, E.D., Darlington, TK., Hanos, B.A. and O'Rourke, M.J.E. (2014), "Multifunctional thermally remendable nanocomposites", J. Compos., 2014, Article ID 705687. http://doi.org/10.1155/2014/705687.
  50. Torkaman-Asadi, M.A., Rahmanian, M. and Firouz-Abadi, R.D. (2015), "Free vibrations and stability of high-speed rotating carbon nanotubes partially resting on Winkler foundations", Compos. Struct., 126, 52-61. https://doi.org/10.1016/j.compstruct.2015.02.037.
  51. Vodenitcharova, T. and Zhang, L.C. (2003), "Effective wall thickness of single walled carbon nanotubes", Phy. Rev. B., 68, 165401. https://doi.org/10.1103/PhysRevB.68.165401.
  52. Wang, Q. Varadan, V.K. and Quek, S.T. (2006), "Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models", Phys. Lett. A., 357(2), 130-135. https://doi.org/10.1016/j.physleta.2006.04.026.
  53. Yakobson, B.I., Brabec, C.J. and Bernholc, J. (1996), "Nano-mechanics of carbon tubes: instabilities beyond linear response", Phy. Rev. Lett., 76, 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511.
  54. Yakobson, B.I., Campbell, M.P., Brabec, C.J. and Bemholc J. (1997), "High strain rate fracture and C-chain unravelling in carbon nanotubes", Comput. Mater. Sci., 8(4), 341-348. https://doi.org/10.1016/S0927-0256(97)00047-5.
  55. Yoon, J., Ru, C.Q. and Mioduchowski. A. (2003), "Vibration of an embedded multiwall carbon nanotube", Compos. Sci. Technol., 63(11), 1533-1542. https://doi.org/10.1016/S0266-3538(03)00058-7.
  56. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065.
  57. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. http://doi.org/10.12989/sem.2015.54.4.693.
  58. Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Vibration analysis of thin cylindrical shells using wave propagation approach", J. Sound Vib., 239(3), 397-403. https://doi.org/10.1006/jsvi.2000.3139.