
International Journal of Advanced Smart Convergence Vol.11 No.2 1-6 (2022) 

http://dx.doi.org/10.7236/IJASC.2022.11.2.1 

 

Copyright©  2022 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms of 

the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) 

 
 

CPC: A File I/O Cache Management Policy for Compute-Bound Workloads 

 

 

Hyokyung Bahn 

 

Professor, Department of Computer Engineering, Ewha University, Korea 

bahn@ewha.ac.kr 

 

Abstract  

With the emergence of the new era of the 4th industrial revolution, compute-bound workloads with large 

memory footprint like big data processing increase dramatically. Even in such compute-bound workloads, 

however, we observe bulky I/Os while loading big data from storage to memory. Although file I/O cache plays 

a role of accelerating the performance of storage I/O, we found out that the cache hit rate in such environments 

is not improved even though we increase the file I/O cache capacity because of some special I/O references 

generated by compute-bound workloads. To cope with this situation, we propose a new file I/O cache 

management policy that improves the cache hit rate for compute-bound workloads significantly. Trace-driven 

simulations by replaying file I/O reference logs of compute-bound workloads show that the proposed cache 

management policy improves the cache hit rate compared to the well-acknowledged CLOCK algorithm by a 

large margin. 

 

Keywords: Compute-bound workload, file I/O cache, cache hit rate, storage, CLOCK. 

 

1. Introduction 

 Due to the recent technology enhancement in many-core computing technologies, large footprint 

workloads like graphic rendering and deep learning grow rapidly [1]. This is in line with the emerging era of 

the 4th Industrial Revolution, where compute-bound applications or generating high quality contents is not the 

domain of the specialized industries any longer [1, 2].  

Even in such compute-bound workloads, file I/O references for reading input files from data storage or 

writing output files to storage may be a performance bottleneck [3, 4]. This is because accessing data storage 

via I/O is about five to six orders of magnitude slower than computing in processor cores [3, 5]. File I/O cache 

is a well-known technique to buffer the speed gap between data storage and computing cores. In file I/O cache, 

data files accessed from the data storage are stored in a portion of DRAM memory called file I/O cache, which 

can be reused without storage accesses in case the same files are used again in the future [6, 7]. As the size of 

the file I/O cache is not infinite, a certain amount of data files in the file I/O cache should be discarded in order 

to maintain new data files in case the cache space is exhausted. This article makes an observation that file I/O 

IJASC 22-2-1 

 

Manuscript Received: March. 3, 2022 / Revised: March. 7, 2022 / Accepted: March. 9, 2022 

Corresponding Author: bahn@ewha.ac.kr  

Tel: +82-2-3277-2368, Fax: +82-2-3277-2306 

Professor, Department of Computer Engineering, Ewha University, Korea  



2                                       International Journal of Advanced Smart Convergence Vol.11 No.2 1-6 (2022) 

 

cache for conventional systems does not behave efficiently for compute-bound workloads, and proposes a new 

file I/O cache management policy customized for compute-bound workloads.  

To this end, this article gathers file I/O logs while running a certain number of compute-bound workloads 

and analyzes their characteristics. By this analysis, we categorize file I/O patterns in the logs into 3 types. The 

1st is the sequential read references that happens when the workload begins its launch. The 2nd reference type 

is the multiple read references including loop and temporally co-related. As compute-bound workloads 

generally execute long computations after a bulk of storage I/O, this type of file references is utilized as input 

files for computations. The 3rd reference type is sequential write references. This occurs due to the file writes 

after the completion of computing.  

Our observations exhibit that the aforementioned file I/O reference patterns of compute-bound workloads 

deteriorate the performance of the file I/O cache significantly. To resolve this issue, this article proposes a new 

file I/O cache policy to enhance the file I/O performance of compute-bound workloads by making use of the 

observation results of I/O logs. Our experimental results based on log replaying simulations show that the 

presented file I/O cache policy enhances the file I/O performance of compute-bound workloads by an average 

of 96% in comparison with the current system adopting the CLOCK algorithm. 

 

              

(a) Traditional workloads                         (b) Compute-bound workloads 

Figure 1. The cache hit rate of the file I/O cache. 

 

2. File I/O Cache Performance in Compute-bound Workloads 

In this section, we depict the performance of traditional file I/O cache when running conventional workloads 

in comparison with compute-bound workloads, and argue that the traditional file I/O cache does not perform 

well for compute-bound workloads.  

Figures 1(a) shows the cache hit rate of conventional workloads as the cache capacity increases. Note that 

this experiment has been performed with the conventional file I/O cache settings by making use of the CLOCK 

algorithm. In this experiment, the x-axis is scaled relative to the total referenced file capacity of workloads. 

That is, 100% in the x-axis shows the configuration that the entire referenced files of the workload can be 

maintained in the file I/O cache at the same time, without incurring eviction of cached items. This is an identical 

condition with the infinite capacity cache, where any cache management policies result in the same cache hit 

rate, not being possible in real world situations. Usually, the capacity of the file I/O cache in real environments 

is often configured to smaller than 50%, where removal happens essentially after the warm-up period of the 

0

10

20

30

40

50

60

70

0 5 10 15 20

C
a
c
h
e
 h

it
 r

a
te

 (
%

)

Cache capacity (%)

0

20

40

60

80

100

0 10 20 30 40 50

C
a

c
h

e
 h

it
 r

a
te

 (
%

)

Cache capacity (%)

0

20

40

60

80

100

0 5 10 15 20

C
a

c
h
e
 h

it
 r

a
te

 (
%

)

Cache capacity (%)

0

20

40

60

80

100

0 10 20 30 40 50 60

C
a

c
h
e
 h

it
 r

a
te

 (
%

)

Cache capacity (%)



CPC: A File I/O Cache Management Policy for Compute-Bound Workloads                                          3 

 

system. As we see from Figure 1(a), the cache hit rate of the file I/O cache increases as the cache capacity 

becomes large in conventional workloads. 

From now on, let us discuss the cache hit rate of compute-bound workloads. Figure 1(b) shows the cache 

hit rate for similar settings of Figure 1(a). As we see, the curves form almost horizontal lines when the cache 

capacity is not large enough. The performance improvement can be seen only after the enough capacity cache 

is provided at the right side of the figures. This implies that the file I/O cache performance in compute-bound 

workloads does not improve if the capacity of the file I/O cache is not large enough to preserve a certain portion 

of hot referenced files of the workload. For this reason, traditional file I/O cache policies are not efficient to 

use in compute-bound workload environments. This article aims to design an efficient file I/O cache 

management policy for compute-bound workloads, thereby improving the cache hit rate gradually as the 

capacity of the file I/O cache grows. To do so, we anatomize the file I/O reference logs of compute-bound 

workloads and suggest a file I/O cache management policy considering the observation results. 

 

3. File I/O Cache Management for Compute-bound Workloads 

To see the effectiveness of file I/O cache in compute-bound workloads, this article anatomizes the file I/O 

reference logs of two compute-bound workloads. Through this analysis, the three types of reference 

characteristics have been observed. First, the sequential read references while launching the workloads have 

been classified. Actually, these references cannot contribute to improving file I/O cache performances since 

they are referenced only once. Note that caching is effective only when data files are referenced again in the 

future. However, we can consider these reference patterns as long looping references because the same data 

files will be re-referenced in case the workload will run again in future. We anatomize these references and 

observe that they are files for configuring workload launching. The second reference type is multiple read 

references including loop and temporally co-related. As compute-bound workloads are typically composed of 

short file I/O references and long computation periods, this type of file references will be used as input files 

for computations. Note that these multiple read references are composed of short looping references and 

temporally co-related references. The third reference type is sequential write references. This occurs due to the 

file writing after the completion of computations, thereby flushing to storage. Since the three reference types 

we anatomized can be classified based on the attributes of files, this article aim to manage the file I/O cache 

customized for compute-bound workloads through the reference types of data files.  

When various reference types are mixed in file I/O references, partitioning the file I/O cache regions for 

each reference type and utilizing proper policies will be efficient. This article divides the file I/O cache regions 

by making use of the expected performance benefit of each reference type while workload runs and makes use 

of suitable caching policies.  

First, if a data file has been referenced and is not used again, we call this type of data the single-reference 

data, and we do not maintain such type of data in the file I/O cache. This is because expected performance 

benefit is 0 when we store such data in the file I/O cache. Second, if a looping reference type is classified, we 

assign a new cache region based on the period of the references considering the expected performance benefit. 

To this end, some literatures detect reference types, but this causes large overhead of online management [8]. 

Thus, instead of instant detection, this article makes use of the file I/O reference characteristics already 

anatomized in compute-bound workloads for managing the file I/O cache with low overhead. 

Our file I/O cache is composed of a configuring region C for sequential read references that happen while 

launching the workload, and a short looping reference region S, and a temporally co-related reference region 



4                                       International Journal of Advanced Smart Convergence Vol.11 No.2 1-6 (2022) 

 

T. It does not allocate a file I/O cache region for sequential write references as they are not effective in 

improving cache performances. Instead, we assign a certain size of buffer area for temporarily buffering the 

data files to be flushed to storage and remove them right after written to storage. The capacities of the cache 

regions C, S, and T are periodically adjusted based on the contribution of each region to the cache hit rate.  

Our policy utilizes the history buffers C’, S’, and T’ to estimate the effectiveness of the corresponding 

regions C, S, and T, respectively, and resizes each region. The history buffers predict the performance benefit 

of each region when the capacity of the cache region grows. In particular, history buffers only maintain the 

attributes of files discarded recently from the corresponding regions. By utilizing the attributes of the discarded 

file data, our policy can evaluate the performance benefit of the region in case its capacity grows. If frequent 

references are monitored in the history buffers of a certain region, our policy increases the capacity of the 

corresponding region to enhance the cache hit rate of that region. As the total cache capacity is limited, the 

capacity of other regions need to be adjusted together when the capacity of a certain region grows due to 

frequent references in its ghost buffers. Assume that data files in C’ are referenced frequently. Then, our policy 

increases the capacity of C to store more configuring files in the cache, and then decreases the capacities of S 

and T. As a result, the capacity of the history buffer C’ is reduced. This is because the cache hit rate of the total 

file I/O cache can be predicted if the total capacity of the history buffer and the corresponding region will be 

the full capacity of the file I/O cache. Previous studies also used some types of history buffers and the overhead 

of history buffers is known to be small enough since they need only the attributes of data files, which is smaller 

than tens of bytes whereas an actual data file is at least 4 kilobytes [9, 10].  

Now, let us explain the details of the proposed policy. If a data file is retrieved and needs to be stored in the 

file I/O cache, our policy checks the attributes of the file and the reference type of the file referenced. If it is a 

sequential write reference for storing the computation output, our policy adds it to the buffer area. As 

aforementioned, data files maintained in the buffer area will be flushed to storage soon, so they exist 

temporarily in the buffer and will be discarded. Otherwise, data files are added to the configuring region C, 

short looping reference region S, or a temporally co-related reference region T based on their file attributes. 

As data files in C and S generate looping references, the most recently used data is discarded first if removal 

is necessary. The reason is that the least recently used data will be reused first in the looping reference patterns 

[8]. In contrast, when removal is necessary in the T region, we evict the least recently used item as it is known 

to perform well in workloads with temporally co-related references [8].  

If the requested data file already exists in the file I/O cache, it can be found either in C, S, or T region. In 

case the data file is in either C or S region, it is essentially a part of a looping reference pattern, so we decrease 

its priority to the lowest in that region as it will be re-referenced farthest. If the requested data file is found in 

the T region, we raise its priority to the highest in that region. Even if the requested data file does not exist in 

the file I/O cache, the attribute of the data file can be found in the history buffer. In such a case, the capacity 

of the history buffer as well as the actual region are adjusted appropriately. For re-balancing the total file I/O 

cache, our policy adjusts the capacity of the other regions as well. There are three cases that the attribute of a 

data file is found in the history buffer. First, in case the requested data file exists in C’ history buffer, the 

capacity of C increases, and the capacity of C’ is reduced by the same amount. The capacity of S or T is 

decreased and the capacities of their corresponding history buffers are adjusted accordingly. Second, when the 

requested data file exists in the S’ ghost buffer, the capacity of S increases and the capacity of S’ is reduced 

by the same amount. Then, the capacities of other regions and their history buffers are adjusted accordingly. 

Third, when the requested data file exists in the T’ history buffer, the capacity of T increases, and its history 

buffer decreases by the same amount. Our policy also adjusts the capacities of other regions and their history  



CPC: A File I/O Cache Management Policy for Compute-Bound Workloads                                          5 

 

buffers accordingly. Figure 2 depicts the conceptual flow of our file I/O cache. 

 

4. Simulation Experiments 

To validate the performance of the proposed policy, trace-driven simulations have been conducted with file 

I/O workload logs. The system we executed the workloads is a desktop consisting of Intel i7-7700 4-core CPU 

with 8KB cache memory, 4GB DRAM, and 192MB/s SATA HDD. The size of file I/O cache assigned to the 

workloads is about 1GB. We used Linux Ubuntu 16.04 as our OS. The file I/O workload logs were collected 

at the system call layer while the workloads ran. We compare our policy with the CLOCK replacement policy. 

Figure 3 shows the cache hit rate of CLOCK and the proposed policy that we call CPC (Caching Policy for 

Compute-bound workloads) as the file I/O cache capacity changes. As we see from this figure, CPC exhibits 

better cache hit rate than CLOCK for all workload cases. As compute-bound workloads have a lot of short 

looping references, CLOCK does not exhibit good results when the file I/O cache is small for maintaining the 

looping references. This is because file data are removed before referenced again if the file I/O cache is smaller 

than the loop size. CLOCK shows good performances only when the file I/O cache is large enough to maintain 

the entire looping references. For this reason, growing the file I/O cache size does not result in the performance 

gain until a certain large capacity.  

Specifically, the performance improvement of the proposed CPC policy is 96% on average and up to 192% 

against CLOCK. Our simulation result has shown that CLOCK also performs reasonably well if the file I/O 

cache is large enough. However, this may not be the case in real system environments because of the evolution 

of workloads as time goes on. Please, note that the performance benefit of CPC is gradual as the file I/O cache 

capacity increases and this is independent of the size of workloads to be executed in the system. 

 

 

Figure 2. A conceptual flow of our file I/O cache. 

   
(a) workload 1                                     (b) workload 2 

Figure 3. The cache hit rate of CIC compared to CLOCK. 

2 

Figure 2. The cache hit rate of CIC compared to CLOCK. 

Data file

reference

Y

Seq. write?

Add to buffering area

N

Classify by

file attributes

Add to C (MRU eviction)                            Found in C’?       Increase C

Add to S (MRU eviction)                            Found in S’?      Increase S

Add to T (LRU eviction)                             Found in T’?        Increase T

Storage 

I/O

File I/O

cache Seq. write?

Y

N

Classify by

file attributes

Assign lowest priority in C

Assign lowest priority in S

Assign highest priority in T 

Check

history

buffer

0

10

20

30

40

50

60

70

80

20 28 36 44 52 60 68 76 84 92 100

C
a

c
h

e
 h

it
 r

a
te

 (
%

)

Cache capacity (MB)

CLOCK CPC

0

10

20

30

40

50

60

70

80

90

320 360 400 440 480 520 560 600 640 680 720 760

C
a

c
h

e
 h

it
 r

a
te

 (
%

)

Cache capacity (MB)

CLOCK CPC



6                                       International Journal of Advanced Smart Convergence Vol.11 No.2 1-6 (2022) 

 

5. Conclusion 

This article proposed CPC, a file I/O cache management policy customized for compute-bound workloads. 

In our preliminary analysis, we found out that compute-bound workloads show a certain special file reference 

characteristics, which deteriorates the cache hit rate of the file I/O cache seriously. To cope with this situation, 

this article suggested a new file I/O caching policy, which partitions the cache regions for each reference type 

according to the contribution of each type of references to the performance enhancement, and monitors the 

assigned cache regions for resizing them based on workload evolutions. Trace-driven simulations showed that 

CIC performs better than the well-known CLOCK policy with respect to the cache hit rate by 96% on average 

and up to 192%. 

 

Acknowledgement 

This work was supported by the IITP grant funded by the Korea government (MSIT) (No.2021-0-02068, 

Artificial Intelligence Innovation Hub) and the ICT R&D program of MSIT/IITP (2018-0-00549, Extremely 

Scalable Order Preserving OS for Manycore and Non-volatile Memory). 

 

References  
 

[1] G. Patil, S. Deshpande, “Distributed rendering system for 3D animations with Blender,” Proc. IEEE Conf. on 

Advances in Electronics, Communication and Computer Technology, pp.91-98, 2016. 

DOI: https://doi.org/10.1109/ICAECCT.2016.7942562 

[2] S. Yoo, Y. Jo, and H. Bahn, “Integrated scheduling of real-time and interactive tasks for configurable industrial 

systems,” IEEE Transactions on Industrial Informatics, vol. 18, no. 1, pp. 631-641, 2022. 

DOI: https://doi.org/10.1109/TII.2021.3067714 

[3] H. Bahn, J. Kim, “Separation of virtual machine I/O in cloud systems,” IEEE Access, vol. 8, pp. 223756-223764, 

2020. 

DOI: https://doi.org/10.1109/ACCESS.2020.3044172 

[4] O. Kwon, H. Bahn, and K Koh, “Popularity and prefix aware interval caching for multimedia streaming servers,” 

Proc. IEEE CIT Conference, pp. 555-560, 2008. 

DOI: http://doi.org/10.1109/CIT.2008.4594735 

[5] J. Kim and H. Bahn, “Analysis of smartphone I/O characteristics — toward efficient swap in a smartphone,” IEEE 

Access, vol. 7, pp. 129930-129941, 2019. 

DOI: https://doi.org/10.1109/ACCESS.2019.2937852 

[6] S. Lim, H. Bahn, “Characterizing file accesses in android applications and caching implications,” IEEE Access, vol. 

9, pp. 150292-150303, 2021.  

DOI: https://doi.org/10.1109/ACCESS.2021.3125779 

[7] H. Bahn, H. Lee, S. Noh, S. Min, and K. Koh, “Replica-aware caching for web proxies, Computer Communications, 

vol. 25, no. 3, pp. 183-188, 2002. 

DOI: https://doi.org/10.1016/S0140-3664(01)00365-6 

[8] J. Choi, S. Noh, S. Min, Y. Cho, “An implementation study of a detection-based adaptive block replacement scheme,” 

Proc. USENIX Annual Technical Conf., pp. 239-252, 1999. 

[9] T. Johnson and D. Shasha, “2Q: a low overhead high performance buffer management replacement algorithm,” Proc. 

20th ACM Conf. on Very Large Databases (VLDB), pp. 439-450, 1994. 

[10] S. Bansal, D. S. Modha, “CAR: clock with adaptive replacement,” Proc. USENIX Conf. on File and Storage 

Technologies (FAST), 2004. 

 


