DOI QR코드

DOI QR Code

Experimental Evaluation of Developed Ultra-low NOx Coal Burner Using Gas in a Bench-scale Single Burner Furnace

Bench-scale 연소로에서 가스 혼소를 통한 초 저 NOx 석탄 버너 개발 연구

  • Chae, Taeyoung (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Lee, Jaewook (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Lee, Youngjae (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Yang, Won (Thermochemical Energy System Group, Korea Institute of Industrial Technology)
  • 채태영 (한국생산기술연구원 탄소중립산업기술연구부문) ;
  • 이재욱 (한국생산기술연구원 탄소중립산업기술연구부문) ;
  • 이영재 (한국생산기술연구원 탄소중립산업기술연구부문) ;
  • 양원 (한국생산기술연구원 탄소중립산업기술연구부문)
  • Received : 2022.02.10
  • Accepted : 2022.04.04
  • Published : 2022.06.30

Abstract

This study developed and tested an ultra-low NOx burner in an 80 kW combustion furnace. The experiment was conducted in an 80 kW single burner combustion furnace with changing the swirl numbers, total equivalence ratios, and primary/secondary oxidizer ratios. In this study, liquefied natural gas (LNG) was used as an auxiliary fuel to significantly reduce NOx production. In a thermal power plant, the amount of NOx generated during coal combustion is about 300 ppm. However, using the burner tested in this study, it was possible to reduce the amount of NOx generated via LNG co-firing to 40 ppm. If the input amount of the primary oxidizer is enough for the gas to be completely combusted and the gas and coal are added simultaneously, the combusted gas forms a high-temperature region at the burner outlet and volatilizes the coal. As a result, the N contained in the devolatilized coal is discharged. Therefore, when the coal is subsequently burned, the amount of NOx produced decreases because there is almost no N remaining in the coal. If a thermal power plant burner is developed based on the results of this study, it is expected that the NOx generation will be significantly lower in the early stage of combustion.

본 연구는 80 kW 연소로에서 초 저 NOx 버너를 개발하고 실험한 결과를 나타낸 것이다. 실험은 80 kW 단일 버너 연소로에서 진행되었으며, swirl number 변화, 총 당량비, 1차 / 2차 산화제 비율을 변경하여 진행하였다. 본 연구에서는 가스(LNG)를 보조연료로 사용하여 NOx 생성량을 크게 감소 시킬 수 있었다. 화력발전소에서 석탄 연소 시 발생하는 NOx의 양은 약 300 ppm이다. 그러나 본 연구에서 사용된 버너는 LNG를 혼소하여 NOx의 양을 40 ppm까지 감소 시킬 수 있었다. 1차 산화제의 투입량이 보조 연료인 가스가 연소될 만큼만 사용하여 가스와 석탄을 동시에 투입하면 연소가스가 버너 출구에서 고온영역을 형성하여 석탄을 휘발시키므로 N 탈휘발에 포함되어 배출된다. 그러므로 이 후 석탄이 연소 되면 석탄내 포함된 N이 거의 없기 때문에 NOx 생성량이 감소하는 것이다. 본 연구 결과를 바탕으로 실제 화력발전소 버너를 개발한다면 NOx 생성을 연소 초기에 대량 감소시킬 수 있을 것으로 예상된다.

Keywords

Acknowledgement

본 연구는 한국전력공사 주력연구개발과제인 "유연운전용 보일러 연소 및 환경설비 최적화 기술 개발(R20GA10)"과제의 일환으로 수행되었습니다.).

References

  1. Chae, T., "Study on Operating Characteristics for NOx Reduction in Ultra Low NOx Burner Combustion Using 80 kW Furnace," Clean Technol., 26(3), 211-220 (2020). https://doi.org/10.7464/KSCT.2020.26.3.211
  2. Ahn, K., and Kim, H., "An experimental study on the combustion characteristics of a low NOx burner using reburning technology," KSME International Journal, 16(7), 950-958 (2002). https://doi.org/10.1007/BF02949724
  3. Van, A., L, S., G. J., and Beesteheerde, J., "Low-NOx hydrogen burner," Int. J. Hydrogen Energy, 21(6), 445-449 (1996). https://doi.org/10.1016/0360-3199(95)00105-0
  4. Liming, R., Jingxue, A., Chunyu, W., and Lei, W., "Influence of Low NOx Burner Retrofit on the Performances of a Boiler," Ad. Mate. Res., 1023, 116-124 (2014). https://doi.org/10.4028/www.scientific.net/amr.1023.116
  5. Dutka, M., Ditaranto, M., and Lovas, T., "Application of a Central Composite Design for the Study of NOx Emission Performance of a Low NOx Burner," Energies., 8, 3606-3627 (2015). https://doi.org/10.3390/en8053606
  6. Chae, T., "Characteristics of syngas reburning in a coal firing furnace," Journal of thermal environmental & engineers., 15(1) 54-61 (2020).
  7. Zhang, Y., Xing, Y., and Chen, S., "CFD investigation based on gas burner with low-NOx strategy of fuel-staging," 2nd International Workshop on Renewable Energy and Development., (2018).
  8. Sorrentino, G., Sabiab, P., Bozzab, P., Ragucci, R., and Joannonb, M., "Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions," Appl. Energ., 254 676-683 (2019).
  9. Zhou, H., Yang, Y., and Wang, L., "Numerical investigation of gas-particle flow in the primary air pipe of a low NOx swirl burner - The DEM-CFD method," Particuology., 19, 133-140 (2015). https://doi.org/10.1016/j.partic.2014.04.017
  10. Chae, T., "NOx Reduction by Co-Firing and Reburning of Biomass in 1MWth Coal Combustion," J. Korean Soc. Combust., 25(3) 48-53 (2020). https://doi.org/10.15231/jksc.2020.25.3.048
  11. Chae, T., Lee, J., Yang, W., and Ryu, C., "Characteristics of syngas reburning in a natural gas firing furnace-Effects of combustible gas species in the syngas," Journal of Mechanical Science and Technology, 30(8) 3861-3868 (2016). https://doi.org/10.1007/s12206-016-0751-z
  12. Ryosuke, M., Mamoru, O., Isao, I., Shingo, S., and Masahiro, T., " Development of low-NOx DME milti-port burner,"JSME International Journal, 49(2) 245-253 (2006).
  13. Antonio, A., Bruno, F., Alessandro, I., and Matteo, C., "Numerical analysis of a low NOx partially premixed burner for industrial gas turbine applications,"Energy Procedia, 45 1382-1391 (2014). https://doi.org/10.1016/j.egypro.2014.01.145
  14. Marcin, D., Mario, D., and Terese, L., "Application of a Central Composite Design for the Study of NOx Emission Performance of a Low NOx Burner." Energies, 8 3606-3627 (2015). https://doi.org/10.3390/en8053606
  15. Yu, Z., Yuming, X., and Sheng, C., "CFD investigation based on gas burner with low-NOx strategy of fuel-staging,"2018 2nd International Workshop on Renewable Energy and Development, 153 1-12 (2018).
  16. Masayoshi, K., Michitaka, I., Hisao, M., Takashi, K., and Yoshihiko, E., "Improvement of low lopad combustion stability for advanced low NOx burner,"JSME International Journal., 41(4) 1071-1078 (1998).
  17. Marco, T., Francesco, F., Bernardo, F., Sergio, M,. and Alessandro S., "Assessment against experiments of devolatilization and char burnout models for the simulation of an aerodynamically staged swirled low-NOx pulverized coal Burner," Energies, 10(1) 66-89 (2017). https://doi.org/10.3390/en10010066
  18. Torresi, M., Fornarelli, F., Fortunato, B., Camporeale, S., and Saponaro, A., "Assessment against experiments of devolatilization and char burnout models for the simulation of an aerodynamically staged swirled Low-NOx pulverized coal burner," Energies, 10(1) 66-90 (2017). https://doi.org/10.3390/en10010066
  19. Chen, S., Xing, Y., Li, A., "CFD investigation on Low-NOx strategy of folded flame pattern based on fuel-staging natural gas burner," Appl. Therm. Eng., 112 1487-1496 (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.005
  20. Tian, D., Zhong, L., Tana, P., Ma, L., Fang, Q., Zhang, C., Zhang, D., and Chen, G., "Influence of vertical burner tilt angle on the gas temperature deviation in a 700 MW low NOx tangentially fired pulverised-coal boiler," Fuel Process. Technol., 138 616-628 (2015). https://doi.org/10.1016/j.fuproc.2015.07.002
  21. Ti, S., Chen, Z., Li, Z., Zhang, X., Zhang, H., Zou, G., Zeng, L., and Zhu, Q., "Effects of the outer secondary air cone length on the combustion characteristics and NOx emissions of the swirl burner in a 0.5 MW pilot-scale facility during air-staged combustion," Appl. Therm. Eng., 86 318-325 (2015). https://doi.org/10.1016/j.applthermaleng.2015.04.021