DOI QR코드

DOI QR Code

Potential Exposure of Nanoparticles from Laboratory to Office

실험실에서 사무실로의 나노입자의 잠재적 노출

  • Shin, Hyeokjin (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Younghun (Department of Chemical Engineering, Kwangwoon University)
  • 신혁진 (광운대학교 화학공학과) ;
  • 김영훈 (광운대학교 화학공학과)
  • Received : 2022.03.29
  • Accepted : 2022.05.06
  • Published : 2022.06.30

Abstract

Nanoparticles are used in various fields such as chemistry, medicine, the environment, and information and communication. With the increasing use of engineered nanomaterials, exposure to nanoparticles is expected to increase in the workplace and the environmental media. However, while nanotechnology industries are expanding, research on the exposure assessment of nanomaterials to humans and the environment is only at a beginning stage. Especially, if nanoparticles with a size of 100 nm or less that are contained in nano-products are released unintentionally, they may pose potential risks to the human body through breathing or skin exposure. Therefore, in this work, the possibility of potential exposure of nanoparticles moving from the laboratory to the office was confirmed, and nanoparticle safety guidelines are proposed. A nano-collector was used to detect nanoparticles in the atmosphere, and through use of a scanning mobility particle sizer it was found that nanoparticle concentrations in the laboratory and the office tended to be similar. On the assumption that nanoparticles attached to a lab-coat move out of the laboratory, a lab-coat to which nanocarbon black was attached was shaken and the concentration of the remaining particles on the lab-coat determined. The results confirmed that sufficient amounts of nanoparticles attached to the lab-coat could move from the laboratory to the office along the path of a researcher; thus, safety guidelines for the handling of lab-coat nanoparticles are required.

나노입자는 화학, 의학, 환경, 정보통신 등 다양한 생활 분야에 활용되고 있다. 나노물질 사용량의 증가는 작업장 및 환경중 나노물질 노출을 증가시킨다. 그러나 관련 연구는 이제 초기연구에 그치고 있다. 나노제품내 함유된 100 nm 이하의 나노입자가 비의도적으로 배출되게 되면, 호흡이나 피부노출을 통해 인체에 잠재적인 위험을 초래할 수 있다. 본 연구에서는 실험실로부터 사무실로의 나노입자의 잠재적 노출 가능성을 확인하였고, 나노입자 안전 가이드라인을 제언하고자 한다. 실험 진행 중 대기로의 나노입자 발생을 확인하기 위해 나노입자 포집기를 사용하였으며, 실시간 입자측정기를 통해 실험실과 사무실에서 나노입자 농도가 유사한 경향을 보이는 것을 확인하였다. 또한 실험복에 부착 된 나노입자가 실험실 외부로 이동한다고 가정하고, 나노 카본블랙을 부착시킨 실험복을 일정시간 털어준 뒤 실험복내 잔류된 입자의 농도를 확인하였다. 실험 결과, 실험복에 부착된 나노입자는 실험자의 동선을 따라 실험실에서 사무실로 충분히 이동할 수 있음을 확인하였고, 나노입자를 취급하는 실험실의 의복에 관한 안전 가이드라인이 필요함을 확인하였다.

Keywords

References

  1. Sufian, M. M., Khattak, J. Z. K., Yousaf, S., and Rana, M. S., "Safety issues associated with the use of nanoparticles in human body", Photodiagnosis Photodyn. Ther., 19, 67-72 (2017). https://doi.org/10.1016/j.pdpdt.2017.05.012
  2. Park, J., Kwak, B. K., Bae, E., Lee, J., Kim, Y., Choi, K., and Yi, J., "Characterization of exposure to silver nanoparticles in a manufacturing facility", J. Nanopart. Res., 11(7), 1705-1712 (2009). https://doi.org/10.1007/s11051-009-9725-8
  3. Srivastava, V., Gusain, D., and Sharma, Y. C., "Critical review on the toxicity of some widely used engineered nanoparticles", Ind. Eng. Chem. Rese., 54(24), 6209-6233 (2015). https://doi.org/10.1021/acs.iecr.5b01610
  4. Gomez, V., Irusta, S., Balas, F., Navascues, N., and Santamaria, J., "Unintended emission of nanoparticle aerosols during common laboratory handling operations", J. Hazard. Mater., 279, 75-84 (2014). https://doi.org/10.1016/j.jhazmat.2014.06.064
  5. Wang, R., Pan, G., Qian, S., Li, L., and Zhu, Z., "Influence of nanoparticles on the evaporation behavior of nanofluid droplets: A Dh law and underlying mechanism", Langmuir, 36(4), 919-930 (2019). https://doi.org/10.1021/acs.langmuir.9b02669
  6. Umh, H. N., Roh, J., Lee, B. C., Park, S., Yi, J., and Kim, Y., "Case studies for nanomaterials' exposure to environmental media", Korean Chem. Eng. Res., 50(6), 1056-1063 (2012). https://doi.org/10.9713/kcer.2012.50.6.1056
  7. Tsai, C. S. J., "Contamination and release of nanomaterials associated with the use of personal protective clothing", Ann. Occup. Hyg., 59(4), 491-503 (2015). https://doi.org/10.1093/annhyg/meu111
  8. Kang, M., and Kim, Y., "Au-coated Fe3O4@ SiO2 core-shell particles with photothermal activity", Colloids Surf. A: Physicochem. Eng. Asp., 600, 124957 (2020). https://doi.org/10.1016/j.colsurfa.2020.124957
  9. Lee, H., Yook, S. J., and Ahn, K. H., "Effects of exponentially decaying and growing concentrations on particle size distribution from a scanning mobility particle sizer", Aerosol. Sci. Technol., 54(10), 1135-1143 (2020). https://doi.org/10.1080/02786826.2020.1761538
  10. Hong, J., Moon, H., Kim, J., Lee, B. C., Kim, G. B., Lee, H., and Kim, Y., "Differentiation of carbon black from black carbon using a ternary plot based on elemental analysis", Chemosphere, 264, 128511 (2021). https://doi.org/10.1016/j.chemosphere.2020.128511
  11. Balasubramanian, S. K., Yang, L., Yung, L. Y. L., Ong, C. N., Ong, W. Y., and Liya, E. Y., "Characterization, purification, and stability of gold nanoparticles", Biomaterials, 31(34), 9023-9030 (2020). https://doi.org/10.1016/j.biomaterials.2010.08.012