DOI QR코드

DOI QR Code

Catalytic CO2 Methanation over Ni Catalyst Supported on Metal-Ceramic Core-Shell Microstructures

금속-세라믹 코어-쉘 복합체에 담지된 Ni 금속 촉매를 적용한 CO2 메탄화 반응 특성연구

  • Lee, Hyunju (Department of Chemical Engineering, University of Seoul) ;
  • Han, Dohyun (Department of Chemical Engineering, University of Seoul) ;
  • Lee, Doohwan (Department of Chemical Engineering, University of Seoul)
  • 이현주 (서울시립대학교 화학공학과) ;
  • 한도현 (서울시립대학교 화학공학과) ;
  • 이두환 (서울시립대학교 화학공학과)
  • Received : 2022.04.06
  • Accepted : 2022.05.06
  • Published : 2022.06.30

Abstract

Microstructured Al@Al2O3 and Al@Ni-Al LDH (LDH = layered double hydroxide) core-shell metal-ceramic composites are prepared by hydrothermal reactions of aluminum (Al) metal substrates. Controlled hydrothermal reactions of Al metal substrates induce the hydrothermal dissolution of Al ions at the Al-substrate/solution interface and reconstruction as porous metal-hydroxides on the Al substrate, thereby constructing unique metal-ceramic core-shell composite structures. The morphology, composition, and crystal structure of the core-shell composites are affected largely by the ions in the hydrothermal solution; therefore, the critical physicochemical and surface properties of these unique metal-ceramic core-shell microstructures can be modulated effectively by varying the solution composition. A Ni/Al@Al2O3 catalyst with highly dispersed catalytic Ni nanoparticles on an Al@Al2O3 core-shell substrate was prepared by a controlled reduction of an Al@Ni-Al LDH core-shell prepared by hydrothermal reactions of Al in nickel nitrate solution. The reduction of Al@Ni-Al LDH leads to the exolution of Ni ions from the LDH shell, thereby constructing the Ni nanoparticles dispersed on the Al@Al2O3. The catalytic properties of the Ni/Al@Al2O3 catalyst were investigated for CO2 methanation reactions. The Ni/Al@Al2O3 catalyst exhibited 2 times greater CO2 conversion than a Ni/Al2O3 catalyst prepared by conventional incipient wetness impregnation and showed high structural stability. These results demonstrate the high effectiveness of the design and synthesis methods for the metal-ceramic composite catalysts derived by hydrothermal reactions of Al metal substrates.

알루미늄 (Al) 금속을 전구체 및 구조체로 이용, 수열 반응을 통하여 Al@Al2O3와 Al@Ni-Al LDH (LDH = layered double hydroxide) 코어-쉘 복합 구조체를 합성하였다. 제조된 구조체의 형상, 조성, 결정 구조는 수용액에 존재하는 이온들에 의하여 크게 영향을 받았으며, 이를 활용하여 다양한 특성의 촉매 구조체 유도가 가능하였다. Al@Ni-Al LDH 코어-쉘 구조체의 환원을 통하여 Ni 나노 입자가 고정화된 Ni/Al@Al2O3 촉매를 제조하였고, CO2 메탄화 반응에 적용하여 촉매의 특성을 평가하였다. Ni/Al@Al2O3 촉매는 전통적 incipient wetness impregnation 방법에 의하여 제조된 Ni/Al2O3 촉매에 비교하여 Ni 입자의 분산도와 균일성이 매우 높았으며 약 2 배 이상의 CO2 전환율로 높은 촉매적 활성과 더불어 구조의 안정성을 보여 주었다. 이러한 Ni/Al@Al2O3 구조체 촉매의 우수한 특성은 Al 금속을 기반으로 한 새로운 개념의 촉매 구조체 설계와 합성 방법의 타당성을 보여준다.

Keywords

Acknowledgement

이 논문은 2020년도 서울시립대학교 연구년교수 연구비 지원으로 연구되었으며, 부경대학교 화학공학과 우희철 교수님의 정년을 기념하여 투고되었습니다.

References

  1. Moulijn, J. A., van Leeuwen, P. W. N. M., and van Santen, R. A., Catalysis: An Integrated Approach to Homogeneous, Heterogeneous, and Industrial Catalysis, Elsevier, (1993).
  2. Jarenwattananon, N. N., Gloggler, S., Otto, T., Melkonian, A., Morris, W., Burt, S. R., Yaghi, O. M., and Bouchard, L. S., "Thermal Maps of Gases in Heterogeneous Reactions", Nature, 502, 537-540 (2013). https://doi.org/10.1038/nature12568
  3. Richardson, J. T., Remue, D., and Hung, J. K., "Properties of Ceramic Foam Catalyst Supports: Mass and Heat Transfer", Appl. Catal. A, 250, 319-329 (2003). https://doi.org/10.1016/S0926-860X(03)00287-4
  4. Kiwi-Minsker, L., and Renken, A., "Microstructured Reactors for Catalytic Reaction", Catal. Today, 110, 2-14 (2005). https://doi.org/10.1016/j.cattod.2005.09.011
  5. Kim, J., and Lee, D., "Core-Shell Metal-Ceramic Microstructures: Mechanism of Hydrothermal Formation and Properties as Catalyst Materials", Chem. Mater., 28, 2786-2794 (2016). https://doi.org/10.1021/acs.chemmater.6b00582
  6. Kim, J., and Lee, D., "Synthesis and Properties of Core-Shell Metal-Ceramic Microstructures and their Application as Heterogeneous Catalysts", ChemCatChem, 6, 2642-2647 (2014). https://doi.org/10.1002/cctc.201402274
  7. Lee, H., and Lee, D., "Synthesis Chemistry and Properties of Ni Catalysts Fabricated on SiC@Al2O3 Core-Shell Microstructure for Methane Steam Reforming", Catalysts, 10(4), 1-14 (2020).
  8. Yu, J., Wang, Q., O'Hare, D., and Sun, L., "Preparation of two dimensional layered double hydroxide nanosheets and their applications", Chem. Soc. Rev., 46, 5950-5974 (2017). https://doi.org/10.1039/c7cs00318h
  9. Xu, M., and Wei, M., "Layered double hydroxide-based catalysts: recent advances in preparation, structure, and applications", Adv. Funct. Mater. 28, 1802943 (2018). https://doi.org/10.1002/adfm.201802943
  10. Zhang, F., Xiang, X., Li, F., and Duan, X., "Layered double hydroxides as catalytic materials: recent development", Catal. Surv. Asia, 12, 253-265 (2008). https://doi.org/10.1007/s10563-008-9061-5
  11. Yang, R., Zhou, Y., Xing, Y., Li, D., Jiang, D., Chen, M., Shi, W., and Yuan, S., "Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media", App. Catal. B: Environ., 253, 131-139 (2019). https://doi.org/10.1016/j.apcatb.2019.04.054