과제정보
본 연구는 과학기술정보통신부의 재원의 한국연구재단 일반연구자 지원사업 (2021R1F1A1051466)과 서울여대 산학협력특별연구비(2022-0088) 지원에 의해 수행되었음.
참고문헌
- Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: An update. CA Cancer J Clin. 61: 250-281 (2011) https://doi.org/10.3322/caac.20114
- Akagawa M, Shigemitsu T, Suyama K. Production of hydrogen peroxide by polyphenols and polyphenol-rich beverages under quasiphysiological conditions. Biosci. Biotech. Bioch. 67: 2632-2640 (2003) https://doi.org/10.1271/bbb.67.2632
- Bhavya ML, Shewale SR, Rajoriya D, Hebbar UH. Impact of blue LED illumination and natural photosensitizer on bacterial pathogens, enzyme activity and quality attributes of fresh-cut pineapple slices. Food. Bioprocess Tech. 14: 362-372 (2021) https://doi.org/10.1007/s11947-021-02581-7
- Canada AT, Giannella E, Nguyen TD, Mason RP. The production of reactive oxygen species by dietary flavonols. Free Radic. Biol. Med. 9: 441-449 (1990) https://doi.org/10.1016/0891-5849(90)90022-B
- Cardoso DR, Libardi SH, Skibsted LH. Riboflavin as a photosensitizer. Effects on human health and food quality. Food Funct. 5: 487-502 (2012)
- Damyeh MS, Mereddy R, Netzel ME, Sutanbawa Y. An insight into curcumin-based photosensitization as a promising and green food preservation technology. Compr. Rev. Food Sci. F. 19: 1-33 (2020) https://doi.org/10.1111/1541-4337.12466
- Eghbaliferiz S, Iranshahi M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother. Res. 30: 1379-1391 (2016) https://doi.org/10.1002/ptr.5643
- Foti MC. Antioxidant properties of phenols. J. Pharm. Pharmacol. 59: 1673-1685 (2010) https://doi.org/10.1211/jpp.59.12.0010
- Gulcin I, Huyut Z, Elmastas M, Aboul-Enein HY. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 3: 43-53 (2010) https://doi.org/10.1016/j.arabjc.2009.12.008
- Hou Z, Sang S, You H, Lee MJ, Hong J, Chin KV, Yang CS. Mechanism of action of (-)-epigallocatechin-3-gallate: auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res. 65:8049-8056. (2005) https://doi.org/10.1158/0008-5472.CAN-05-0480
- Kim MR, Kang S, Hong J. Modulation of chemical stability and cytotoxic effects of epigallocatechin-3-gallate by different types of antioxidants. Korean J. Food Sci. Technol. 43: 483-489 (2011) https://doi.org/10.9721/KJFST.2011.43.4.483
- Kroes BH, Van Den Berg AJJ, Quarles Van Ufford HC, Van Dijk H, Labadie RP. Anti-inflammatory activity of gallic acid. Planta Med. 58: 499-504 (1992) https://doi.org/10.1055/s-2006-961535
- Lee BH, Choi HS, Hong J. Roles of anti-and pro-oxidant potential of cinnamic acid and phenylpropanoid derivatives in modulating growth of cultured cells. Food Sci. Biotechnol. 31: 463-473 (2022) https://doi.org/10.1007/s10068-022-01042-x
- Lee BH, Kim HJ, Hong J. Antioxidant and cytotoxic activities of curcumin and its analogs: An exploration of structure-activity relationships. Korean J. Food Sci. Technol. 53: 463-469 (2013) https://doi.org/10.9721/KJFST.2021.53.4.463
- Long LH, Halliwell B. Coffee drinking increases levels of urinary hydrogen peroxide detected in healthy human volunteers. Free Radical Res. 32: 463-467 (2000) https://doi.org/10.1080/10715760000300461
- Lyer AK, Greish K, Fang J, Murakami R, Maeda H. High-loading nanosized micelles of copoly (styrene-maleic acid)-zinc protoporphyrin for targeted delivery of a potent heme oxygenase inhibitor. Biomaterials 28: 1871-1881 (2007) https://doi.org/10.1016/j.biomaterials.2006.11.051
- Macdonald IJ, Dougherty TJ. Basic principles of photodynamic therapy. J. Porphyr. Phthalocyanines 5: 105-129 (2001) https://doi.org/10.1002/jpp.328
- Murakami H, Nomura T, Nakashima N. Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposite. Chem. Phys. Lett. 378: 481-485 (2003) https://doi.org/10.1016/S0009-2614(03)01329-0
- Park KA, Choi Y, Kang S, Kim M-R, Hong J. Effects of proteins on the reactivity of various phenolic compounds with the Folin-Ciocalteu regent. Korean J. Food Sci. Technol. 47: 299-305 (2015) https://doi.org/10.9721/KJFST.2015.47.3.299
- Scalbert A, Manach C, Morand C, Remesy C, Jimenez L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. 45: 287-306 (2007)
- Schieber A. Reactions of quinones-mechanisms, structures, and prospects for food research. J. Agr. Food Chem. 66: 13051-13055 (2018) https://doi.org/10.1021/acs.jafc.8b05215
- Verma S, Singh A, Mishra A. Gallic acid: Molecular rival of cancer. Environ. Toxicol. Pharmacol 35: 473-485 (2013) https://doi.org/10.1016/j.etap.2013.02.011
- Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr. 81: 243S-255S (2005)
- Yang S, Lian G. ROS and diseases: role in metabolism and energy supply. Mol. Cell. Biochem. 467: 1-12 (2020) https://doi.org/10.1007/s11010-019-03667-9
- Zhang Z, Sang W, Xie L, Li W, Li B, Li J, Tian H, Yuan Z, Zhao Q, Dai Y. Polyphenol-based nanomedicine evokes immune activation for combination cancer treatment. Angew. Chem. Int. Edit. 60: 1967-1975 (2021) https://doi.org/10.1002/anie.202013406