DOI QR코드

DOI QR Code

The effects of dietary photosensitizers on auto-oxidation of gallic and tannic acids

갈산과 타닌산의 자동산화에 미치는 식품 감광성분의 영향

  • Lee, Eunbin (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Lee, Hyowon (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Hong, Jungil (Division of Applied Food System, College of Natural Science, Seoul Women's University)
  • 이은빈 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 이효원 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 홍정일 (서울여자대학교 자연과학대학 식품응용시스템학부)
  • Received : 2022.05.25
  • Accepted : 2022.06.08
  • Published : 2022.06.30

Abstract

Polyphenols are chemically unstable, and their bioactivities are reduced through oxidation. Photosensitizers (PS) induce photo-oxidation in various food systems. In this study, effects of dietary PS such as riboflavin (Rb), erythrosin B (EB), and zinc protoporphyrin on the auto-oxidation of polyphenols, gallic acid (GA) and tannic acid (TA) were evaluated under a fluorescent light. The formation of oxidation products from GA and TA increased in a PS concentration- and irradiation time-dependent manner. In addition, Rb and EB induced significant reduction in the polyphenols contents and ABTS radical scavenging activity of GA and TA under light. PS significantly enhanced the amount of reactive oxygen species generated from GA and TA. Therefore, the interaction of polyphenols with PS under light results in acceleration of polyphenol oxidation. This phenomenon should be carefully considered during food processing and storage.

본 연구에서는 감광제에 의한 폴리페놀의 갈변 정도 및 폴리페놀 함량의 변화와 산화방지활성과 ROS 생성을 분석하였다. 그 결과 감광제에 의해 갈산과 타닌산의 자동산화가 현저히 가속화 되었으며, 타닌산에서 그 효과가 더욱 두드러졌다. 폴리페놀 함량은 산화가 진행됨에 따라 유의적으로 감소하였으나, 감광제에 농도에 의한 유의적인 차이는 EB에 의해서만 나타났으며, ABTS 라디칼 소거능 변화에서도 유사한 양상을 보였다. 갈산과 타닌산에서 ROS 생성의 증가는 명소에서 감광제 존재 하에 농도 유의적으로 증가하였다. 본 연구 결과는 폴리페놀이 감광제와 함께 빛에 노출 시 폴리페놀의 산화를 촉진시키며, 식품의 가공 및 저장 시 이들의 상호작용을 통한 품질저하 및 생리활성 변화에 주의할 필요가 있음을 시사한다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원의 한국연구재단 일반연구자 지원사업 (2021R1F1A1051466)과 서울여대 산학협력특별연구비(2022-0088) 지원에 의해 수행되었음.

References

  1. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: An update. CA Cancer J Clin. 61: 250-281 (2011) https://doi.org/10.3322/caac.20114
  2. Akagawa M, Shigemitsu T, Suyama K. Production of hydrogen peroxide by polyphenols and polyphenol-rich beverages under quasiphysiological conditions. Biosci. Biotech. Bioch. 67: 2632-2640 (2003) https://doi.org/10.1271/bbb.67.2632
  3. Bhavya ML, Shewale SR, Rajoriya D, Hebbar UH. Impact of blue LED illumination and natural photosensitizer on bacterial pathogens, enzyme activity and quality attributes of fresh-cut pineapple slices. Food. Bioprocess Tech. 14: 362-372 (2021) https://doi.org/10.1007/s11947-021-02581-7
  4. Canada AT, Giannella E, Nguyen TD, Mason RP. The production of reactive oxygen species by dietary flavonols. Free Radic. Biol. Med. 9: 441-449 (1990) https://doi.org/10.1016/0891-5849(90)90022-B
  5. Cardoso DR, Libardi SH, Skibsted LH. Riboflavin as a photosensitizer. Effects on human health and food quality. Food Funct. 5: 487-502 (2012)
  6. Damyeh MS, Mereddy R, Netzel ME, Sutanbawa Y. An insight into curcumin-based photosensitization as a promising and green food preservation technology. Compr. Rev. Food Sci. F. 19: 1-33 (2020) https://doi.org/10.1111/1541-4337.12466
  7. Eghbaliferiz S, Iranshahi M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother. Res. 30: 1379-1391 (2016) https://doi.org/10.1002/ptr.5643
  8. Foti MC. Antioxidant properties of phenols. J. Pharm. Pharmacol. 59: 1673-1685 (2010) https://doi.org/10.1211/jpp.59.12.0010
  9. Gulcin I, Huyut Z, Elmastas M, Aboul-Enein HY. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 3: 43-53 (2010) https://doi.org/10.1016/j.arabjc.2009.12.008
  10. Hou Z, Sang S, You H, Lee MJ, Hong J, Chin KV, Yang CS. Mechanism of action of (-)-epigallocatechin-3-gallate: auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res. 65:8049-8056. (2005) https://doi.org/10.1158/0008-5472.CAN-05-0480
  11. Kim MR, Kang S, Hong J. Modulation of chemical stability and cytotoxic effects of epigallocatechin-3-gallate by different types of antioxidants. Korean J. Food Sci. Technol. 43: 483-489 (2011) https://doi.org/10.9721/KJFST.2011.43.4.483
  12. Kroes BH, Van Den Berg AJJ, Quarles Van Ufford HC, Van Dijk H, Labadie RP. Anti-inflammatory activity of gallic acid. Planta Med. 58: 499-504 (1992) https://doi.org/10.1055/s-2006-961535
  13. Lee BH, Choi HS, Hong J. Roles of anti-and pro-oxidant potential of cinnamic acid and phenylpropanoid derivatives in modulating growth of cultured cells. Food Sci. Biotechnol. 31: 463-473 (2022) https://doi.org/10.1007/s10068-022-01042-x
  14. Lee BH, Kim HJ, Hong J. Antioxidant and cytotoxic activities of curcumin and its analogs: An exploration of structure-activity relationships. Korean J. Food Sci. Technol. 53: 463-469 (2013) https://doi.org/10.9721/KJFST.2021.53.4.463
  15. Long LH, Halliwell B. Coffee drinking increases levels of urinary hydrogen peroxide detected in healthy human volunteers. Free Radical Res. 32: 463-467 (2000) https://doi.org/10.1080/10715760000300461
  16. Lyer AK, Greish K, Fang J, Murakami R, Maeda H. High-loading nanosized micelles of copoly (styrene-maleic acid)-zinc protoporphyrin for targeted delivery of a potent heme oxygenase inhibitor. Biomaterials 28: 1871-1881 (2007) https://doi.org/10.1016/j.biomaterials.2006.11.051
  17. Macdonald IJ, Dougherty TJ. Basic principles of photodynamic therapy. J. Porphyr. Phthalocyanines 5: 105-129 (2001) https://doi.org/10.1002/jpp.328
  18. Murakami H, Nomura T, Nakashima N. Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposite. Chem. Phys. Lett. 378: 481-485 (2003) https://doi.org/10.1016/S0009-2614(03)01329-0
  19. Park KA, Choi Y, Kang S, Kim M-R, Hong J. Effects of proteins on the reactivity of various phenolic compounds with the Folin-Ciocalteu regent. Korean J. Food Sci. Technol. 47: 299-305 (2015) https://doi.org/10.9721/KJFST.2015.47.3.299
  20. Scalbert A, Manach C, Morand C, Remesy C, Jimenez L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. 45: 287-306 (2007)
  21. Schieber A. Reactions of quinones-mechanisms, structures, and prospects for food research. J. Agr. Food Chem. 66: 13051-13055 (2018) https://doi.org/10.1021/acs.jafc.8b05215
  22. Verma S, Singh A, Mishra A. Gallic acid: Molecular rival of cancer. Environ. Toxicol. Pharmacol 35: 473-485 (2013) https://doi.org/10.1016/j.etap.2013.02.011
  23. Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr. 81: 243S-255S (2005)
  24. Yang S, Lian G. ROS and diseases: role in metabolism and energy supply. Mol. Cell. Biochem. 467: 1-12 (2020) https://doi.org/10.1007/s11010-019-03667-9
  25. Zhang Z, Sang W, Xie L, Li W, Li B, Li J, Tian H, Yuan Z, Zhao Q, Dai Y. Polyphenol-based nanomedicine evokes immune activation for combination cancer treatment. Angew. Chem. Int. Edit. 60: 1967-1975 (2021) https://doi.org/10.1002/anie.202013406