DOI QR코드

DOI QR Code

Application of Layered Perovskites Substituted with Co and Ti as Electrodes in SOFCs

Co 및 Ti가 치환된 Layered perovskite의 SOFC 전극에 대한 적용성 연구

  • Kim, Chan Gyu (Department of Advanced materials Science and Engineering, Hanbat National University) ;
  • Shin, Tae Ho (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Nam, Jung Hyun (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Kim, Jung Hyun (Department of Advanced materials Science and Engineering, Hanbat National University)
  • Received : 2022.02.28
  • Accepted : 2022.03.25
  • Published : 2022.06.25

Abstract

In this study, the phase and electrochemical properties of Co and Ti substituted layered perovskites SmBaCo2-xTixO5+d (x=0.5, 0.7, 1.0, 1.1, 1.3, and 1.5) were analyzed, and their application as electrodes in solid oxide fuel cells (SOFCs) were evaluated. After calcination at 1300℃ for 6 h, a single phase was observed for two compositions of the SmBaCo2-xTixO5+d oxide system, SmBaCoTiO5+d (x=1.0) and SmBaCo0.9Ti1.1O5+d (x=1.1). However, the phases of SmBaCoTiO5+d (SBCTO) and SmTiO3 coexisted for compositions with x≥1.3 (Ti content). In contrast, for compositions of x≤0.7, the SmBaCo2O5+d phase was observed instead of the SmTiO3 phase. To evaluate the applicability of these materials as SOFC electrodes, the electrical conductivities were measured under various atmospheres (air, N2, and H2). SBCTO exhibited stable semi-conductor electrical conductivity behavior in an air and N2 atmosphere. However, SBCTO showed insulator behavior at temperatures above 600℃ in a H2 atmosphere. Therefore, SBCTO may only be used as cathode materials. Moreover, SBCTO had an area specific resistance (ASR) value of 0.140 Ω·cm2 at 750℃.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. 2019R1A2C1087534)과 한국세라믹기술원의 기관고유사업(KPP20003/21010)의 지원을 받아 수행된 연구 결과입니다. 이에 감사드립니다.

References

  1. Davis, S.J., Lewis, N.S., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I.L., Benson, S.M., Bradley, T., Brouwer, J., and Chiang, Y.M., et al., 2018, "Net-zero emissions energy systems", Science, 360, 6396.
  2. Rogelj, J., Schaeffer, M., Meinshausen, M., Knutti, R., Alcamo, J., Riahi, K., and Hare, W., 2015, "Zero emission targets as long-term global goals for climate protection", Environ. Res. Lett., 10(10), 105007. https://doi.org/10.1088/1748-9326/10/10/105007
  3. Matsumura, Y., and Nakamori, T., 2004, "Steam reforming of methane over nickel catalysts at low reaction temperature", Appl. Catal. A: Gen., 258(1), 107-114. https://doi.org/10.1016/j.apcata.2003.08.009
  4. Davis, W., and Martin, M., 2014, "Optimal year-round operation for methane production from CO2 and water using wind energy", Energy, 69, 497-505. https://doi.org/10.1016/j.energy.2014.03.043
  5. Xia, W., Liu, X., Jin, F., Jia, X., Shen, Y., and Li, J., 2020, "Evaluation of calcium co doping in double perovskite PrBaCo2O5+δ as cathode material for IT-SOFCs", Electrochim. Acta, 364, 137274. https://doi.org/10.1016/j.electacta.2020.137274
  6. Cascos, V., Fernandez-Diaz, M.T., and Alonso, J.A., 2019, "Structural and electrical characterization of the novel SrCo1-xTixO3-δ(x =0.05, 0.1 and 0.15) perovskites: Evaluation as cathode materials in solid oxide fuel cells", Renew. Energy, 133, 205-215. https://doi.org/10.1016/j.renene.2018.09.073
  7. Jin, F., Liu, J., Niu, B., Ta, L., Li, R., Wang, Y., Yang, X., and He, T., 2016, "Evaluation and performance optimization of double-perovskite LaSrCoTiO5+δcathode for intermediate-temperature solid-oxide fuel cells", Int. J. Hydrog. Energy, 41, 21439-21449. https://doi.org/10.1016/j.ijhydene.2016.08.059
  8. Tong, L., and Tian, D., 2019, "A new A-site-deficient Ti-doped SrCoO3-δ perovskite cathode material for intermediate-temperature solid oxide fuel cells", Mater. Sci. Eng., 490(2),022029.
  9. Wang, S., Zan, J., Qiu, W., Zheng, D., Li, F., Chen, W., Pei, Q., and Jiang, L., 2021, "Evaluation of perovskite oxides LnBaCo2O5+δ (Ln = La, Pr, Nd and Sm) as cathode materials for IT-SOFC", J. Electroanal. Chem., 886, 115144. https://doi.org/10.1016/j.jelechem.2021.115144
  10. Sun, C., Kong, Y., Shao, L., Sun, K., and Zhang, N., 2020, "Probing oxygen vacancy effect on oxygen reduction reaction of the NdBaCo2O5+δcathode for solid oxide fuel cells", J. Power Sources, 459, 228017. https://doi.org/10.1016/j.jpowsour.2020.228017
  11. Du, Z., Li, K., Zhao, H., Dong, X., Zhang, Y., and Swierczek, K., 2020, "A SmBaCo2O5+δdouble perovskite with epitaxially grown Sm0.2Ce0.8O2-δ nanoparticles as a promising cathode for solid oxide fuel cells", J. Mater. Chem. A, 8(28), 14162-14170. https://doi.org/10.1039/d0ta05602b
  12. Zhang, Y., Zhao, H., Du, Z., Swierczek, K., and Li, Y., 2019, "High-Performance SmBaMn2O5+δ electrode for symmetrical solid oxide fuel cell", Chem. Mater., 31(10), 3784-3793. https://doi.org/10.1021/acs.chemmater.9b01012
  13. Gao, J., Li, Q., Xia, W., Sun, L., Huo, L.H., and Zhao, H., 2019, "Advanced electrochemical performance and CO2 tolerance of Bi0.5Sr0.5Fe1-xTixO3-δ perovskite materials as oxygen reduction cathodes for intermediate-temperature solid oxide fuel cells", ACS Sustain. Chem. Eng., 7(22), 18647-18656. https://doi.org/10.1021/acssuschemeng.9b05086
  14. Kim, J.H., Kim, Y.M., Connor, P.A., Irvine, J.T.S., Bae, J.M., and Zhou, W., 2009, "Structural, thermal and electrochemical properties of layered perovskite SmBaCo2O5+d, a potential cathode material for intermediate-temperature solid oxide fuel cells", J. Power Sources, 194(2), 704-711. https://doi.org/10.1016/j.jpowsour.2009.06.024
  15. Kim, C.G., Woo, S.H., Song, K.E., Baek, S.W., Kang, H.I., Choi, W.S., and Kim, J.H., 2021, "Enhanced electrochemical properties of Non-stoichiometric layered perovskites, Sm1-xBaCo2O5+d, for IT-SOFC cathodes", Front. Chem., 9.
  16. Mori, M., Wang, Z., Serizawa, N., and Itoh, T., 2011, "Evaluation of SrTi1-xCoxO3 perovskites (0 ≤ x ≤ 0.2) as interconnect materials for solid oxide fuel cells", J. Fuel Cell Sci. Technol., 8(5), 051010. https://doi.org/10.1115/1.4003761
  17. Olszewska, A., Swierczek, K., and Niemczyk, A., 2020, "Peculiar properties of electrochemically oxidized SmBaCo2-xMnxO5+δ (x = 0; 0.5 and 1) A-Site ordered perovskites", Crystals, 10(3), 205. https://doi.org/10.3390/cryst10030205
  18. Murray, E.P., Tsai, T., and Barnett, S.A., 1998, "Oxygen transfer processes in (La,Sr) MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study", Solid State Ion., 110(3-4), 235-243. https://doi.org/10.1016/S0167-2738(98)00142-8
  19. Kaur, P., and Singh, K., 2020, "Review of perovskite-structure related cathode materials for solid oxide fuel cells", Ceramics International, 46(5), 5521-5535. https://doi.org/10.1016/j.ceramint.2019.11.066
  20. Zan, J., Wang, S., Zheng, D., Li, F., Chen, W., Pei, Q., and Jiang, L., 2021, "Characterization and functional application of PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode material for IT-SOFC", Mater. Res. Bull., 137, 111173. https://doi.org/10.1016/j.materresbull.2020.111173
  21. Yang, Q., Tian, D., Liu, R., Wu, H., Chen, Y., Ding, Y., Lu, X., and Lin, B., 2021, "Exploiting rare-earth-abundant layered perovskite cathodes of LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln= La and Nd) for SOFCs", Int. J. Hydrog. Energy., 46(7), 5630-5641. https://doi.org/10.1016/j.ijhydene.2020.11.031
  22. Guan, R., Wang, Z., Xu, H., Hao, X., Yang, L., Liu, J., Yu, S., and He, T., 2022, "Manipulating the activity and thermal compatibility of NdBaCoFeO5+δ cathodes for intermediate-temperature solid oxide fuel cells via fluorine doping", ACS Appl. Energy Mater., 5(1), 481-491. https://doi.org/10.1021/acsaem.1c03007
  23. Song, K.E., Woo, S.H., Baek, S.W., Kang, H.I., Choi, W.S., Park, J.Y., and Kim, J.H., 2021, "SmBa1-xCaxCo2O5+d layered perovskite cathodes for intermediate temperature-operating solid oxide fuel cells", Front. Chem., 8.
  24. Woo, S.H., Shin, T.H., Kang, H.I., Choi, W.S., Kim, H.S., and Kim, J.H., 2019, "Phase synthesis and electrochemical characteristics of Non-stoichimometric Sm1-xBa0.5Sr0.5Co2O5+d layered perovskites for IT-SOFC cathodes", New. Renew. Energy, 15(2), 81-89. https://doi.org/10.7849/ksnre.2019.6.15.2.081
  25. Steele, B.C.H., 1996, "Survey of materials selection for ceramic fuel cells II. Cathodes and anodes", Solid State Ion., 86-88(2), 1223-1234. https://doi.org/10.1016/0167-2738(96)00291-3