DOI QR코드

DOI QR Code

Effect of low-temperature GaN grown at different temperature on residual stress of epitaxial GaN

저온 GaN의 성장 온도에 따른 에피택셜 GaN의 stress relaxation 효과

  • 이승훈 (한양대학교 세라믹연구소) ;
  • 이주형 (한양대학교 신소재공학과) ;
  • 오누리 (한양대학교 신소재공학과) ;
  • 이성철 (한양대학교 세라믹연구소) ;
  • 박형빈 (에임즈마이크론(주)) ;
  • 신란희 (에임즈마이크론(주)) ;
  • 박재화 (에임즈마이크론(주))
  • Received : 2022.05.31
  • Accepted : 2022.06.09
  • Published : 2022.06.30

Abstract

To improve the crystallinity of GaN, there are researches on surface treatment to control the difference in physical properties between GaN and heterogeneous substrate. 'Low-temperature GaN (LT-GaN)' is one of the ways to solve the problem and we investigated the relationship between growth temperature and properties of LT-GaN in our homemade vertical type HVPE. The LT-GaN nuclei were formed on the sapphire surface at low growth temperatures and they presented differences in the density and crystallinity depending on the growth temperature. Significantly, the stress relaxation effect on the epitaxial GaN (epi-GaN) was affected by the crystallinity of LT-GaN. However, the high crystallinity of LT-GaN exacerbated the crystal quality of epi-GaN because they worked as a catalyst and seed of polycrystalline.

이종 기판과 GaN의 물성 차이로 인해 발생하는 결함을 제어하기 위한 다양한 방법 중 동종 물질을 완충층으로 사용하는 LT-GaN 방법을 사용하여 완충층과 성장 온도의 상관성을 자체 제작한 성장 장비를 통해 확인하고자 하였다. 성장 온도에 따라 표면에 형성된 LT-GaN 결정성에 변화가 있었으며, annealing 후 LT-GaN가 나타내는 결정성에 따라 epiGaN의 응력 완화 효과에 차이점이 있었다. 반면 LT-GaN의 높은 결정성은 다결정을 형성하는 원인으로 작용하여 그 위에 성장하는 epi-GaN의 결정질을 저해하는 결과를 유발하였다.

Keywords

References

  1. J.H. Edgar, "Properties of group III nitrides" (Institution of Electrical Engineers, London, 1994).
  2. S. Strite, M.E. Lin and H. Morkoc, "Progress and prospects for GaN and the III-V nitride semiconductors", Thin Solid Films 231 (1993) 197. https://doi.org/10.1016/0040-6090(93)90713-Y
  3. I.M. Watson, "Metal organic vapour phase epitaxy of AlN, GaN, InN and their alloys: A key chemical technology for advanced device applications", Coord. Chem. Rev. 257 (2013) 2120. https://doi.org/10.1016/j.ccr.2012.10.020
  4. T.J. Flack, B.N. Pushpakaran and S.B. Bayne, "GaN technology for power electronic applications: a review", J. Electron. Mater. 45 (2016) 2673. https://doi.org/10.1007/s11664-016-4435-3
  5. J. Hu, H. Wei, S. Yang, C. Li, H. Li, X. Liu, L. Wang and Z. Wang, "Hydride vapor phase epitaxy for gallium nitride substrate", J. Semicond. 40 (2019) 101801. https://doi.org/10.1088/1674-4926/40/10/101801
  6. K.S.H. Kawakami, K. Tsubouchi and N. Mikoshiba, "Epitaxial growth of AlN film with an initial-nitriding layer on a-Al2O3 substrate", Jpn. J. Appl. Phys. 27 (1988) L161. https://doi.org/10.1143/JJAP.27.L161
  7. D.S. Wuu, W.K. Wang, K.S. Wen, S.C. Huang, S.H. Lin, S.Y. Huang and C.F. Lin, "Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template", Appl. Phys. Lett. 89 (2006) 161105. https://doi.org/10.1063/1.2363148
  8. Q. Huo, Y. Shao, Y. Wu, B. Zhang, H. Hu and X. Hao, "High quality self-separated GaN crystal grown on a novel nanoporous template by HVPE", Sci. Rep. 8 (2018) 3166. https://doi.org/10.1038/s41598-018-21607-3
  9. S. Nakamura, "GaN growth using GaN buffer layer", Jpn. J. Appl. Phys. 30 (1991) L1705. https://doi.org/10.1143/JJAP.30.L1705
  10. F.-W. Yang, Y.-Y. Chen, S.-W. Feng, Q. Sun and J. Han, "Effects of thickness of a low-temperature buffer and impurity incorporation on the characteristics of nitrogen-polar GaN", Nanoscale Res. Lett. 11 (2016) 509. https://doi.org/10.1186/s11671-016-1727-8
  11. E. Richter, Ch. Hennig, M. Weyers, F. Habel, J.-D. Tsay, W.-Y. Liu, P. Bruckner, F. Scholz, Yu. Makarov, A. Segal and J. Kaeppeler, ""Reactor and growth process optimization for growth of thick GaN layers on sapphire substrates by HVPE", J. Cryst. Growth 277 (2005) 6. https://doi.org/10.1016/j.jcrysgro.2004.12.169
  12. C.E.C. Dam, P.R. Hageman and P.K. Larsen, "Carrier gas and position effects on GaN growth in a horizontal HVPE reactor: An experimental and numerical study", J. Cryst. Growth 285 (2005) 31. https://doi.org/10.1016/j.jcrysgro.2005.08.006
  13. J. Meng and Y. Jaluria, "Numerical simulation of GaN growth in a metalorganic chemical vapor deposition process", J. Manuf. Sci. Eng. 135 (2013) 061013. https://doi.org/10.1115/1.4025781
  14. P. Kempisty and S. Krukowski, "Crystal growth of GaN on (0001) face by HVPE-atomistic scale simulation", J. Cryst. Growth 303 (2007) 37. https://doi.org/10.1016/j.jcrysgro.2006.12.057
  15. A.H. White and W. Melville, "The decomposition of ammonia at high temperatures", J. Am. Chem. Soc. 27 (1905) 373. https://doi.org/10.1021/ja01982a005
  16. S.A. Kukushkin, V.N. Bessolov, A.V. Osipov and A.V. Luk'yanov, "Mechanism and kinetics of early growth stages of a GaN film", Phys. Solid State 44 (2002) 1399. https://doi.org/10.1134/1.1494642
  17. S. Alexandrov, A. Kovalgin and D. Krasovitskiy, "A study of CVD of gallium nitride films by in situ gas-phase UV spectroscopy', J. Phys. IV 05 (1995) 183.
  18. Z. Dong, Y. Andre, V.G. Dubrovskii, C. Bougerol, C. Leroux, M.R. Ramdani, G. Monier, A. Trassoudaine, D. Castelluci and E. Gil, "Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy", Nanotechnol. 28 (2017) 125602. https://doi.org/10.1088/0957-4484/28/12/125602
  19. E. Ruiz, S. Alvarez and P. Alemany, "Electronic structure and properties of AlN", Phys. Review B 49 (1994) 7115. https://doi.org/10.1103/physrevb.49.7115
  20. R. Ramesh, R. Loganathan, S.S. Menon, K. Baskar and S. Singh, "Controlled nucleation and growth of nanostructures by employing surface modified GaN based layers/heterostructures as bottom layer", RSC Adv. 4 (2014) 7112. https://doi.org/10.1039/c3ra45250f
  21. T. Onozu, R. Miura, S. Takami, M. Kubo, A. Miyamoto, Y. Iyechika and T. Maeda, "Investigation of thermal annealing process of GaN layer on sapphire by molecular dynamics", Jpn. J. Appl. Phys. 39 (2000) 4400. https://doi.org/10.1143/JJAP.39.4400
  22. J.C. Zolper, M.H. Crawford, A.J. Howard, J. Ramer and S.D. Hersee, "Morphology and photoluminescence improvements from high-temperature rapid thermal annealing of GaN", Appl. Phys. Lett. 68 (1996) 200. https://doi.org/10.1063/1.116459
  23. L. Zhen-Kun, K. Yi-Lan, H. Ming, Q. Yu, X. Han and N. Hong-Pan, "An experimental analysis of residual stress measurements in porous silicon using microraman spectroscopy", Chin. Phys. Lett. 21 (2004) 403. https://doi.org/10.1088/0256-307X/21/2/053
  24. T. Zywietz, J. Neugebauer and M. Scheffler, "Adatom diffusion at GaN (0001) and (0001) surfaces", Appl. Phys. Lett. 73 (1998) 487. https://doi.org/10.1063/1.121909
  25. H. Fujikura, K. Iizuka and S. Tanaka, :Realization of low dislocation GaN/sapphire wafers by 3-step metalorganic vapor phase epitaxial growth with island induced dislocation control", Jpn. J. Appl. Phys. 42 (2003) 2767. https://doi.org/10.1143/JJAP.42.2767
  26. Y. Tian, Y. Shao, X. Hao, Y. Wu, L. Zhang, Y. Dai, Q. Juo, B. Zhang and H. Hu, "Preparation and optimization of freestanding GaN using low-temperature GaN layer", Front. Mater. Sci. 13 (2019) 314. https://doi.org/10.1007/s11706-019-0466-z
  27. J. Prazmowska, R. Korbutowicz, R. Paszkiewicz, A. Szyszka, J. Serafinczuk, A. Podhorodecki, J. Misiewicz and M. Tlaczala, "Optimization of GaN nucleation layer deposition conditions on sapphire substrates in HVPE system", Vacuum 82 (2008) 988. https://doi.org/10.1016/j.vacuum.2008.01.037