DOI QR코드

DOI QR Code

Harmonic ACK Transmissions from Multiple Gateway considering the Quasi-Orthogonal Characteristic of LoRa CSS Spreading Factors

LoRa CSS 확산 인자의 준직교 특성을 고려한 수신응답의 다중 게이트웨이 조화 전송 기법

  • Byeon, Seunggyu (Department of Artificial Intelligence, Silla University)
  • Received : 2022.05.16
  • Accepted : 2022.06.05
  • Published : 2022.06.30

Abstract

In this paper, we propose a novel MAC protocol based on the harmonic transmission of ACK, called HAT-LoRa, for improving the reliability and the utilization in multiple gateway LoRa Networks. LoRa is basically vulnerable to collision due to the primitive pure ALOHA-like MAC. Whereas data frame delivery can be guaranteed by the transparent bridge of multiple receiving gateways, ACK is still transmitted by a single gateway in LoRa Network. HAT-LoRa provides the augmented reception opportunity of ACK via the simultaneous transmissions of identical ACK in multiple spreading factors. The proposed method reduces the expected transmission times of ACK double gateway environment as well as single gateway environment, by 55 and 60% in maximum, by 35% and 40% in average, in a single- and double-gateway environment, respectively. Especially, it outperforms under the environment where the distance between end device and gateways are similar to each other.

본 논문에서는 LoRa 네트워크의 신뢰성과 처리율을 향상시킬 수 있는 다중 게이트웨이의 수신 응답 조화 전송 기법 HAT-LoRa를 제안한다. LoRa 네트워크는 알로하류의 매체 접근 제어를 사용하여 충돌에 매우 취약한데, 데이터 패킷은 여러 게이트웨이가 수신하여 전달률을 일정 부분 보장할 수 있지만 수신응답 패킷은 단일 게이트웨이를 통해서만 이루어진다. HAT-LoRa는 LoRaWAN의 여러 확산 인자로 동시에 패킷을 수신할 수 있는 특성을 이용하여 다중 게이트웨이가 다른 논리채널을 이용해 수신응답을 동시에 전송하여 증가된 수신 기회를 제공한다. 제안 기법은 단일 게이트웨이와 이중 게이트웨이 환경에서 수신 응답의 기대 전송 시간이 각각 최대 55%와 60%, 평균 35%와 40% 줄어드는 결과를 보인다. 특히, 단말과 여러 게이트웨이와의 거리가 비슷한 환경에서 높은 성능을 나타낸다.

Keywords

References

  1. Ericsson "Cellular Networks for Massive IoT," Ericsson White Paper Uen 284, Report 23-3278, 2016.
  2. D. Boswarthick, O. Elloumi, and O. Hersent, M2M communications: a systems approach, 1st ed. France, John Wiley & Sons, 2012.
  3. Cisco Annual Internet Report (2018-2023) White Paper [Internet]. Available: https://www.cisco.com/c/en/us/solutions /collateral/executive-perspectives/annual-internet-report/wh ite-paper-c11-741490.html.
  4. Transforma Insights. IoT connections in 2030: 44 billion LPWA, 468 million 5G (no-mMTC), and 4% of cellular using private networks [Internet]. Available: https://transformainsights.com/news/.
  5. LoRa Alliance. LoRa/LoRaWAN Link Layer, Back-End Interfaces Standard, and LoRaWAN Regional Parameters [Online]. Available: https://lora-alliance.org/
  6. D. Croce, M. Gucciardo, S. Mangione, G. Santaromita, and I. Tinnirello, "Impact of LoRa imperfect orthogonality: Analysis of link-level performance," IEEE Communications Letters, vol. 22, no. 4, pp. 796-799, Jan. 2018. https://doi.org/10.1109/lcomm.2018.2797057
  7. M. C. Bor, U. Roedig, T. Voigt, and J. M. Alonso, "Do LoRa low-power wide-area networks scale?," in Proceedings of the 19th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems, Malta, Malta, pp. 59-67, 2016.
  8. A. I. Pop, U. Raza, P. Kulkarni, and M. Sooriyabandara, "Does bidirectional traffic do more harm than good in LoRaWAN based LPWA Networks?," in GLOBECOMM 2017-2017 IEEE Global Communications Conference, Singapore, pp. 1-6, 2017.
  9. T. Elshabrawy and J. Robert, "Analysis of BER and coverage performance of LoRa modulation under same spreading factor interference," in 2018 IEEE 29th Annual International symposium on Personal, Indoor and Mobile Radio Communication (PIMRC), Bologna, Italy, pp. 1-6, 2018.
  10. B. Chaudhari and M. Zennaro, "LoRa Transmission over Rayleigh fading channels in presence of interference," in Innovations in Electronics and Communication Engineering, Hyderabad, India, pp. 185-192, 2020.
  11. T. Elshabrawy and J. Robert, "Closed-form approximation of LoRa modulation BER performance," IEEE Communications Letter, vol. 22, no. 9, pp. 1778-1781, Sep. 2018. https://doi.org/10.1109/lcomm.2018.2849718
  12. S. Byeon and J. Kim, "PcLoRa: Point-coordinating LoRa with new Channel Structure for massive, reliable and low-latency IoT," in 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, pp. 596-601, 2020.
  13. F. Cuomo, M. Campo, A. Caponi, G. Bianchi, G. Rossini, and P. Pisani, "EXPLoRa: Extending the performance of LoRa by suitable spreading factor allocations," in 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, pp. 1-8, 2017.
  14. A. Waret, M. Kaneko, A. Guitton, and N. El Rachkidy, "LoRa throughput analysis with imperfect spreading factor orthogonality," IEEE Wireless Communications Letters, vol. 8, no. 2, pp. 408-411, Apr. 2018. https://doi.org/10.1109/lwc.2018.2873705
  15. L. Amichi, M. Kaneko, N. E. Rachkidy, and A. Guitton, "Spreading factor allocation strategy for LoRa networks under imperfect orthogonality," in ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China, pp. 1-7, 2019.
  16. C. Caillouet, M. Heusse, and F. Rousseau, "Optimal SF allocation in LoRaWAN considering physical capture and imperfect orthogonality," in 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa: HI, USA, pp. 1-6, 2019.
  17. Y. Hasegawa and K. Suzuki, "A multi-user ACK-aggregation method for large-scale reliable LoRaWAN service," in ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China, pp. 1-7, May. 2019.
  18. L. Leonardi, F. Battaglia, and L. L. Bello, "RT-LoRa: A Medium Access Strategy to Support Real-Time Flows Over LoRa-Based Networks for Industrial IoT Applications," IEEE Internet of Things Journal, pp. 10812-10823, Jun. 2019. https://doi.org/10.1109/jiot.2019.2942776
  19. D. Zorbas, K. Abdelfadeel, P. Kotzanikolaou, and D. Pesch, "TS-LoRa:Time-slotted LoRaWAN for the Industrial Internet of Things," Computer Communications, vol. 153, pp. 1-10, Mar. 2020. https://doi.org/10.1016/j.comcom.2020.01.056
  20. K. Q. Abdelfadeel, D. Zorbas, V. Cionca, and D. Pesch, "FREE-Fine-Grained Scheduling for Reliable and Energy-Efficient Data Collection in LoRaWAN," IEEE Internet of Things Journal, vol. 7, no. 1, pp. 669-683, Jul. 2019. https://doi.org/10.1109/jiot.2019.2949918
  21. J. Lee, Y. S. Yoon, H. W. Oh, and K. R. Park, "DG-LoRa: Deterministic Group Acknowledgment Transmissions in LoRa Networks for Industrial IoT Applications," Sensors, vol. 21, no. 4, p. 1444, Feb. 2021.
  22. LoRa Alliance. LoRa/LoRaWAN Link Layer, Back-End Interfaces Standard, and LoRaWAN Regional Parameters [Online]. Available: https://lora-alliance.org/.