DOI QR코드

DOI QR Code

A computed tomography-based analysis of the structure of the mandible according to age and sex

  • Jung, Soyeon (Department of Plastic and Reconstructive Surgery, Kangdong Sacred Heart Hospital) ;
  • Yun, Hyunjong (Department of Plastic and Reconstructive Surgery, Kangdong Sacred Heart Hospital) ;
  • Chung, Chul Hoon (Department of Plastic and Reconstructive Surgery, Kangdong Sacred Heart Hospital) ;
  • Kim, Kuylhee (Department of Plastic and Reconstructive Surgery, Kangdong Sacred Heart Hospital) ;
  • Chang, Yongjoon (Department of Plastic and Reconstructive Surgery, Kangdong Sacred Heart Hospital)
  • 투고 : 2022.04.05
  • 심사 : 2022.06.16
  • 발행 : 2022.06.20

초록

Background: The primary objectives of mandibular surgery are to achieve optimal occlusion, low sensory disturbance, and adequate fixation with early movement. In-depth knowledge of the mandibular structure is required to achieve these goals. This study used computed tomography (CT) to evaluate the mandibular cortical thickness and cancellous space according to age and sex. Methods: We enrolled 230 consecutive patients, aged 20 to 50 years, who underwent CT scanning. The cortex and cancellous space centered around the inferior alveolar nerve (IAN) canal were measured at two specific locations: the lingula and second molar region. Statistical analysis of differences according to increasing age and sex was performed. Results: The t-test revealed that the cancellous space and cortical thickness differed significantly with respect to the threshold of 35 years of age. Both cortical thickness and cancellous space in the molar region were negatively correlated with age. Meanwhile, both cortical thickness and cancellous space in the lingula region showed a positive correlation with age. With respect to sex, significant differences in the cancellous space at the molar region and the cortical thickness at the lingula were observed. However, no further statistically significant differences were observed in other variables with respect to sex. The sum of each measurement on the mandibular body reflected the safe distance from the surface of the outer cortex to the IAN canal. The safe distances also showed statistically significant differences between those above and below 35 years of age. Conclusion: Knowledge of the anatomical structure of the mandible and of changes in bone structure is crucial to ensure optimal surgical outcomes and avoid damage to the IAN. CT examination is useful to identify changes in the bone structure, and these should be taken into account in the planning of surgery for older patients.

키워드

참고문헌

  1. Rees RT. Permanent damage to inferior alveolar and lingual nerves. Br Dent J 1992;173:123-4. https://doi.org/10.1038/sj.bdj.4807964
  2. Kushnerev E, Yates JM. Evidence-based outcomes following inferior alveolar and lingual nerve injury and repair: a systematic review. J Oral Rehabil 2015;42:786-802. https://doi.org/10.1111/joor.12313
  3. Mavili ME, Canter HI, Saglam-Aydinatay B. Semirigid fixation of mandible and maxilla in orthognathic surgery: stability and advantages. Ann Plast Surg 2009;63:396-403. https://doi.org/10.1097/SAP.0b013e318190322f
  4. Friscia M, Sbordone C, Petrocelli M, Vaira LA, Attanasi F, Cassandro FM, et al. Complications after orthognathic surgery: our experience on 423 cases. Oral Maxillofac Surg 2017;21:171-7. https://doi.org/10.1007/s10006-017-0614-5
  5. Seo HJ, Choi YK. Current trends in orthognathic surgery. Arch Craniofac Surg 2021;22:287-95. https://doi.org/10.7181/acfs.2021.00598
  6. Bede SY, Ismael WK, Al-Assaf DA, Omer SS. Inferior alveolar nerve injuries associated with mandibular fractures. J Craniofac Surg 2012;23:1776-8. https://doi.org/10.1097/SCS.0b013e318266fda3
  7. Smith BM, Deshmukh AM, Barber HD, Fonseca RJ. Mandibular fractures. In: Fonseca RJ, Barber HD, Powers MP, Frost DE, editors. Oral and maxillofacial trauma. 4th ed. St. Louis: Elsevier Saunders; 2013. p. 293-330.
  8. Ehrenfeld M, Prein J, Assael L, Ueeck B, Gellrich NC, Schoen R, et al. Mandibular fractures. In: Ehrenfeld M, Manson PN, Prein J, editors. Principles of internal fixation of the craniomaxillofacial skeleton trauma and orthognathic surgery. Stuttgart: Georg Thieme Verlag; 2012. p. 137-79.
  9. Perry M, Holmes S. Mandibular fractures. In: Perry M, Holmes S, editors. Atlas of operative maxillofacial trauma surgery: primary repair of facial injuries. London: Springer; 2014. p. 160-243.
  10. Lee H, Kim KS, Choi JH, Hwang JH, Lee SY. Trauma severity and mandibular fracture patterns in a regional trauma center. Arch Craniofac Surg 2020;21:294-300. https://doi.org/10.7181/acfs.2020.00556
  11. Goyushov S, Dursun E, Tozum TF. Mandibular cortical indices and their relation to gender and age in the cone-beam computed tomography. Dentomaxillofac Radiol 2020;49:20190210. https://doi.org/10.1259/dmfr.20190210
  12. Shaik KV, Mohan AP, Kumar J, Chari H. Pre-operative assessment of anatomical position of inferior alveolar nerve and its significance in bilateral sagittal split osteotomy. J Maxillofac Oral Surg 2017;16:453-64. https://doi.org/10.1007/s12663-016-0985-4
  13. Won SY, Kim SH, Kim ST, Paik DJ, Song WC, Koh KS, et al. Trabecular bone ratio of mandible using micro-computed tomography in Korean. J Craniofac Surg 2010;21:920-4. https://doi.org/10.1097/SCS.0b013e3181d87a42
  14. Al-Kalaly AA, Wong RW, Cheung LK, Purkayastha SK, Schatzle M, Rabie AB. Evaluation of bone thickness around the mental foramen for potential fixation of a bone-borne functional appliance: a computer tomography scan study. Clin Oral Implants Res 2010;21:1288-93. https://doi.org/10.1111/j.1600-0501.2010.01947.x
  15. Manlove AE, Romeo G, Venugopalan SR. Craniofacial growth: current theories and influence on management. Oral Maxillofac Surg Clin North Am 2020;32:167-75. https://doi.org/10.1016/j.coms.2020.01.007
  16. Yoshioka I, Tanaka T, Khanal A, Habu M, Kito S, Kodama M, et al. Relationship between inferior alveolar nerve canal position at mandibular second molar in patients with prognathism and possible occurrence of neurosensory disturbance after sagittal split ramus osteotomy. J Oral Maxillofac Surg 2010;68:3022-7. https://doi.org/10.1016/j.joms.2009.09.046
  17. Johannesdottir F, Turmezei T, Poole KE. Cortical bone assessed with clinical computed tomography at the proximal femur. J Bone Miner Res 2014;29:771-83. https://doi.org/10.1002/jbmr.2199
  18. Someya K, Mochizuki T, Hokari S, Tanifuji O, Katsumi R, Koga H, et al. Age- and sex-related characteristics in cortical thickness of femoral diaphysis for young and elderly subjects. J Bone Miner Metab 2020;38:533-43. https://doi.org/10.1007/s00774-019-01079-9
  19. Lillie EM, Urban JE, Lynch SK, Weaver AA, Stitzel JD. Evaluation of skull cortical thickness changes with age and sex from computed tomography scans. J Bone Miner Res 2016;31:299-307. https://doi.org/10.1002/jbmr.2613
  20. Ohiomoba H, Sonis A, Yansane A, Friedland B. Quantitative evaluation of maxillary alveolar cortical bone thickness and density using computed tomography imaging. Am J Orthod Dentofacial Orthop 2017;151:82-91. https://doi.org/10.1016/j.ajodo.2016.05.015
  21. Nicol P, Loncle T, Pasquet G, Vacher C. Surgical implications of the anatomic situation of the mandibular canal for mandibular osteotomies: a cone beam computed tomographic study. Surg Radiol Anat 2020;42:509-14. https://doi.org/10.1007/s00276-019-02379-5
  22. Lee JH, Son YJ, Hwang JH, Baek SH, Jeon JH. Influence of anatomic position and intraoperative exposure of the inferior alveolar nerve on neurosensory disturbance after sagittal split ramus osteotomy: a three-dimensional computed tomography study. Oral Surg Oral Med Oral Pathol Oral Radiol 2016;122:300-5. https://doi.org/10.1016/j.oooo.2016.04.008
  23. van der Hee JG, Verweij JP, de Jonge H, Fiocco M, Mensink G, van Merkesteyn J. Density of the mandibular ramus (cancellous:cortical bone volume ratio) as a predictor of the lingual fracture pattern in bilateral sagittal split osteotomy. Br J Oral Maxillofac Surg 2020;58:427-31. https://doi.org/10.1016/j.bjoms.2020.01.026
  24. Haas Junior OL, Guijarro-Martinez R, de Sousa Gil AP, da Silva Meirelles L, Scolari N, Munoz-Pereira ME, et al. Hierarchy of surgical stability in orthognathic surgery: overview of systematic reviews. Int J Oral Maxillofac Surg 2019;48:1415-33. https://doi.org/10.1016/j.ijom.2019.03.003
  25. Sun Y, Tian L, Luebbers HT, Politis C. Relapse tendency after BSSO surgery differs between 2D and 3D measurements: a validation study. J Craniomaxillofac Surg 2018;46:1893-8. https://doi.org/10.1016/j.jcms.2018.09.012
  26. van der Hoeve EP, Wittkampf A, Rosenberg A. Preventing hypoesthesia after a buccal plate fracture in a sagittal split procedure: a technical note. J Craniomaxillofac Surg 2018;46:1818-20. https://doi.org/10.1016/j.jcms.2018.07.018
  27. Morita T, Takebayashi T, Takashima H, Yoshimoto M, Ida K, Tanimoto K, et al. Mapping occipital bone thickness using computed tomography for safe screw placement. J Neurosurg Spine 2015;23:254-8. https://doi.org/10.3171/2014.11.SPINE14624
  28. Bonangi R, Kamath G, Srivathsa HS, Babshet M. Utility of CBCT for the measurement of palatal bone thickness. J Stomatol Oral Maxillofac Surg 2018;119:196-8. https://doi.org/10.1016/j.jormas.2018.02.009
  29. Seebeck J, Goldhahn J, Stadele H, Messmer P, Morlock MM, Schneider E. Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screws. J Orthop Res 2004;22:1237-42. https://doi.org/10.1016/j.orthres.2004.04.001
  30. Thiele OC, Eckhardt C, Linke B, Schneider E, Lill CA. Factors affecting the stability of screws in human cortical osteoporotic bone: a cadaver study. J Bone Joint Surg Br 2007;89:701-5.
  31. Wallace MJ, Bledsoe G, Moed BR, Israel HA, Kaar SG. Relationship of cortical thickness of the proximal humerus and pullout strength of a locked plate and screw construct. J Orthop Trauma 2012;26:222-5. https://doi.org/10.1097/BOT.0b013e31822421f7
  32. Lindner J, Douglas L, Seligson D, Waddell S, Voor M. Orthopaedic anatomy of the sternum: a micro-CT study to guide the fixation of sternal fractures. Biol Eng Med 2017;2:1-4.
  33. Stoelinga PJW. Osteotomies of the mandible. In: Harle F, Champy M, Terry B, editors. Atlas of craniomaxillofacial osteosynthesis: microplates, miniplates, and screws. 2nd ed. New York: Thieme; 2009. p. 109-15.
  34. Aziz SR, Greenberg AM, Escobar V, Schwimmer A. Maxillary osteotomies: mandibular sagittal split ramus osteotomy. In: Greenberg AM, Schmelzeisen R, editors. Craniomaxillofacial reconstructive and corrective bone surgery. 2nd ed. New York: Springer; 2019. p. 610-1.
  35. D'Agostino A, Trevisiol L, Gugole F, Bondi V, Nocini PF. Complications of orthognathic surgery: the inferior alveolar nerve. J Craniofac Surg 2010;21:1189-95. https://doi.org/10.1097/SCS.0b013e3181e1b5ff
  36. Colella G, Cannavale R, Vicidomini A, Lanza A. Neurosensory disturbance of the inferior alveolar nerve after bilateral sagittal split osteotomy: a systematic review. J Oral Maxillofac Surg 2007;65:1707-15. https://doi.org/10.1016/j.joms.2007.05.009
  37. Lee JH. Treatment of mandibular angle fractures. Arch Craniofac Surg 2017;18:73-5. https://doi.org/10.7181/acfs.2017.18.2.73
  38. Orloff G. Management of facial fractures. Mandible fractures. In: Thaller SR, Bradley JP, Garri JI, editros. Craniofacial surgery. New York: Informa Healthcare; 2008. p. 305-14.