DOI QR코드

DOI QR Code

Evolution of Radiological Treatment Response Assessments for Cancer Immunotherapy: From iRECIST to Radiomics and Artificial Intelligence

  • Nari Kim (Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Eun Sung Lee (Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Sang Eun Won (Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Mihyun Yang (Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Amy Junghyun Lee (Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Youngbin Shin (Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Yousun Ko (Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Junhee Pyo (Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Hyo Jung Park (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Kyung Won, Kim (Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2022.03.20
  • Accepted : 2022.08.12
  • Published : 2022.11.01

Abstract

Immunotherapy has revolutionized and opened a new paradigm for cancer treatment. In the era of immunotherapy and molecular targeted therapy, precision medicine has gained emphasis, and an early response assessment is a key element of this approach. Treatment response assessment for immunotherapy is challenging for radiologists because of the rapid development of immunotherapeutic agents, from immune checkpoint inhibitors to chimeric antigen receptor-T cells, with which many radiologists may not be familiar, and the atypical responses to therapy, such as pseudoprogression and hyperprogression. Therefore, new response assessment methods such as immune response assessment, functional/molecular imaging biomarkers, and artificial intelligence (including radiomics and machine learning approaches) have been developed and investigated. Radiologists should be aware of recent trends in immunotherapy development and new response assessment methods.

Keywords

Acknowledgement

This work was supported in part by grants from the National Research Foundation of Korea (NRF-2021R1A2B5B03001891).

References

  1. Park H, Sholl LM, Hatabu H, Awad MM, Nishino M. Imaging of precision therapy for lung cancer: current state of the art. Radiology 2019;293:15-29  https://doi.org/10.1148/radiol.2019190173
  2. Garcia-Figueiras R, Baleato-Gonzalez S, Luna A, MunozIglesias J, Oleaga L, Vallejo Casas JA, et al. Assessing immunotherapy with functional and molecular imaging and radiomics. Radiographics 2020;40:1987-2010  https://doi.org/10.1148/rg.2020200070
  3. Yirgin IK, Erturk SM, Dogan I, Vatansever S. Are radiologists ready to evaluate true response to immunotherapy? Insights Imaging 2021;12:29 
  4. Porcu M, Solinas C, Mannelli L, Micheletti G, Lambertini M, Willard-Gallo K, et al. Radiomics and "radi-...omics" in cancer immunotherapy: a guide for clinicians. Crit Rev Oncol Hematol 2020;154:103068 
  5. Park HJ, Kim GH, Kim KW, Lee CW, Yoon S, Chae YK, et al. Comparison of RECIST 1.1 and iRECIST in patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Cancers (Basel) 2021;13:120 
  6. Park HJ, Kim KW, Won SE, Yoon S, Chae YK, Tirumani SH, et al. Definition, incidence, and challenges for assessment of hyperprogressive disease during cancer treatment with immune checkpoint inhibitors: a systematic review and metaanalysis. JAMA Netw Open 2021;4:e211136 
  7. Lee AJ, Kim KW, Cho YC, Ko Y, Sung YS, Shin Y, et al. Incidence of immune-mediated pseudoprogression of lymphoma treated with immune checkpoint inhibitors: systematic review and meta-analysis. J Clin Med 2021;10:2257 
  8. Won SE, Park HJ, Byun S, Pyo J, Kim JH, Choi CM, et al. Impact of pseudoprogression and treatment beyond progression on outcome in patients with non-small cell lung cancer treated with immune checkpoint inhibitors. Oncoimmunology 2020;9:1776058 
  9. Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel) 2020;12:738 
  10. Kim PH, Suh CH, Kim HS, Kim KW, Kim DY, Lee EQ, et al. Immune checkpoint inhibitor with or without radiotherapy in melanoma patients with brain metastases: a systematic review and meta-analysis. Korean J Radiol 2021;22:584-595  https://doi.org/10.3348/kjr.2020.0728
  11. Russo L, Avesani G, Gui B, Trombadori CML, Salutari V, Perri MT, et al. Immunotherapy-related imaging findings in patients with gynecological malignancies: what radiologists need to know. Korean J Radiol 2021;22:1310-1322  https://doi.org/10.3348/kjr.2020.1299
  12. Zheng B, Shin JH, Li H, Chen Y, Guo Y, Wang M. Comparison of radiological tumor response based on iRECIST and RECIST 1.1 in metastatic clear-cell renal cell carcinoma patients treated with programmed cell death-1 inhibitor therapy. Korean J Radiol 2021;22:366-375  https://doi.org/10.3348/kjr.2020.0404
  13. Jin S, Sun Y, Liang X, Gu X, Ning J, Xu Y, et al. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct Target Ther 2022;7:39 
  14. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer 2012;12:278-287  https://doi.org/10.1038/nrc3236
  15. Tong JTW, Harris PWR, Brimble MA, Kavianinia I. An insight into FDA approved antibody-drug conjugates for cancer therapy. Molecules 2021;26:5847 
  16. Wang S, Chen K, Lei Q, Ma P, Yuan AQ, Zhao Y, et al. The state of the art of bispecific antibodies for treating human malignancies. EMBO Mol Med 2021;13:e14291 
  17. Wang X, Tang S, Cui X, Yang J, Geng C, Chen C, et al. Cytokine-induced killer cell/dendritic cell-cytokine-induced killer cell immunotherapy for the postoperative treatment of gastric cancer: a systematic review and meta-analysis. Medicine (Baltimore) 2018;97:e12230 
  18. Lasvergnas J, Naigeon M, Chouahnia K, Zelek L, Chaput N, Duchemann B. Adoptive cell therapies in thoracic malignancies. Cancer Immunol Immunother 2022;71:2077-2098  https://doi.org/10.1007/s00262-022-03142-3
  19. Kalisvaart GM, Bloem JL, Bovee JVMG, van de Sande MAJ, Gelderblom H, van der Hage JA, et al. Personalising sarcoma care using quantitative multimodality imaging for response assessment. Clin Radiol 2021;76:313.e1-313.e13  https://doi.org/10.1016/j.crad.2020.12.009
  20. Wu M, Zhang Y, Zhang Y, Liu Y, Wu M, Ye Z. Imagingbased biomarkers for predicting and evaluating cancer immunotherapy response. Radiol Imaging Cancer 2019;1:e190031 
  21. Liu Y, Wu M, Zhang Y, Luo Y, He S, Wang Y, et al. Imaging biomarkers to predict and evaluate the effectiveness of immunotherapy in advanced non-small-cell lung cancer. Front Oncol 2021;11:657615 
  22. Ligero M, Garcia-Ruiz A, Viaplana C, Villacampa G, Raciti MV, Landa J, et al. A CT-based radiomics signature is associated with response to immune checkpoint inhibitors in advanced solid tumors. Radiology 2021;299:109-119  https://doi.org/10.1148/radiol.2021200928
  23. Pharaon R, Koczywas MA, Salgia S, Mohanty A, Massarelli E. Biomarkers in immunotherapy: literature review and future directions. J Thorac Dis 2020;12:5119-5127  https://doi.org/10.21037/jtd.2020.04.15
  24. Borcoman E, Kanjanapan Y, Champiat S, Kato S, Servois V, Kurzrock R, et al. Novel patterns of response under immunotherapy. Ann Oncol 2019;30:385-396  https://doi.org/10.1093/annonc/mdz003
  25. Cohen D, Beyar-Katz O, Even-Sapir E, Perry C. Lymphoma pseudoprogression observed on [18F]FDG PET-CT scan 15 days after CAR-T infusion. Eur J Nucl Med Mol Imaging 2022;49:2447-2449  https://doi.org/10.1007/s00259-022-05722-y
  26. Wang X, McIntosh L, Selove WJ, Zivny J, Cerny J. Pseudoprogression of triple-hit diffuse large B-cell lymphoma following polatuzumab vedotin-based salvage therapy. Leuk Lymphoma 2021;62:2022-2025  https://doi.org/10.1080/10428194.2021.1894646
  27. Braschi-Amirfarzan M, Tirumani SH, Hodi FS Jr, Nishino M. Immune-checkpoint inhibitors in the era of precision medicine: what radiologists should know. Korean J Radiol 2017;18:42-53  https://doi.org/10.3348/kjr.2017.18.1.42
  28. Tirumani SH, Ramaiya NH, Keraliya A, Bailey ND, Ott PA, Hodi FS, et al. Radiographic profiling of immune-related adverse events in advanced melanoma patients treated with ipilimumab. Cancer Immunol Res 2015;3:1185-1192  https://doi.org/10.1158/2326-6066.CIR-15-0102
  29. Durrechou Q, Domblides C, Sionneau B, Lefort F, Quivy A, Ravaud A, et al. Management of immune checkpoint inhibitor toxicities. Cancer Manag Res 2020;12:9139-9158  https://doi.org/10.2147/CMAR.S218756
  30. Tang SQ, Tang LL, Mao YP, Li WF, Chen L, Zhang Y, et al. The pattern of time to onset and resolution of immune-related adverse events caused by immune checkpoint inhibitors in cancer: a pooled analysis of 23 clinical trials and 8,436 patients. Cancer Res Treat 2021;53:339-354  https://doi.org/10.4143/crt.2020.790
  31. Smith DA, Kikano E, Tirumani SH, de Lima M, Caimi P, Ramaiya NH. Imaging-based toxicity and response pattern assessment following CAR T-cell therapy. Radiology 2022;302:438-445  https://doi.org/10.1148/radiol.2021210760
  32. Yoon JG, Smith DA, Tirumani SH, Caimi PF, Ramaiya NH. CAR T-cell therapy: an update for radiologists. AJR Am J Roentgenol 2021;217:1461-1474  https://doi.org/10.2214/AJR.21.26091
  33. Xiao X, Huang S, Chen S, Wang Y, Sun Q, Xu X, et al. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. J Exp Clin Cancer Res 2021;40:367 
  34. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228-247  https://doi.org/10.1016/j.ejca.2008.10.026
  35. Frelaut M, du Rusquec P, de Moura A, Le Tourneau C, Borcoman E. Pseudoprogression and hyperprogression as new forms of response to immunotherapy. BioDrugs 2020;34:463-476  https://doi.org/10.1007/s40259-020-00425-y
  36. Basler L, Gabrys' HS, Hogan SA, Pavic M, Bogowicz M, Vuong D, et al. Radiomics, tumor volume, and blood biomarkers for early prediction of pseudoprogression in patients with metastatic melanoma treated with immune checkpoint inhibition. Clin Cancer Res 2020;26:4414-4425  https://doi.org/10.1158/1078-0432.CCR-20-0020
  37. Park HJ, Kim KW, Pyo J, Suh CH, Yoon S, Hatabu H, et al. Incidence of pseudoprogression during immune checkpoint inhibitor therapy for solid tumors: a systematic review and meta-analysis. Radiology 2020;297:87-96  https://doi.org/10.1148/radiol.2020200443
  38. Ferrari C, Maggialetti N, Masi T, Nappi AG, Santo G, Niccoli Asabella A, et al. Early evaluation of immunotherapy response in lymphoma patients by 18F-FDG PET/CT: a literature overview. J Pers Med 2021;11:217 
  39. Cheson BD, Ansell S, Schwartz L, Gordon LI, Advani R, Jacene HA, et al. Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood 2016;128:2489-2496  https://doi.org/10.1182/blood-2016-05-718528
  40. Keam SJ. Piflufolastat F 18: diagnostic first approval. Mol Diagn Ther 2021;25:647-656  https://doi.org/10.1007/s40291-021-00548-0
  41. Fanti S, Goffin K, Hadaschik BA, Herrmann K, Maurer T, MacLennan S, et al. Consensus statements on PSMA PET/CT response assessment criteria in prostate cancer. Eur J Nucl Med Mol Imaging 2021;48:469-476  https://doi.org/10.1007/s00259-020-04934-4
  42. Giraudet AL, Kryza D, Hofman M, Moreau A, Fizazi K, Flechon A, et al. PSMA targeting in metastatic castration-resistant prostate cancer: where are we and where are we going? Ther Adv Med Oncol 2021;13:17588359211053898 
  43. Park HJ, Park B, Lee SS. Radiomics and deep learning: hepatic applications. Korean J Radiol 2020;21:387-401  https://doi.org/10.3348/kjr.2019.0752
  44. Shur JD, Doran SJ, Kumar S, Ap Dafydd D, Downey K, O'Connor JPB, et al. Radiomics in oncology: a practical guide. Radiographics 2021;41:1717-1732  https://doi.org/10.1148/rg.2021210037
  45. Narang S, Lehrer M, Yang D, Lee J, Rao A. Radiomics in glioblastoma: current status, challenges and potential opportunities. Transl Cancer Res 2016;5:383-397  https://doi.org/10.21037/tcr.2016.06.31
  46. Kocak B, Durmaz ES,, Ates, E, Kilickesmez O. Radiomics with artificial intelligence: a practical guide for beginners. Diagn Interv Radiol 2019;25:485-495  https://doi.org/10.5152/dir.2019.19321
  47. Ibrahim A, Primakov S, Beuque M, Woodruff HC, Halilaj I, Wu G, et al. Radiomics for precision medicine: current challenges, future prospects, and the proposal of a new framework. Methods 2021;188:20-29  https://doi.org/10.1016/j.ymeth.2020.05.022
  48. Barabino E, Rossi G, Pamparino S, Fiannacca M, Caprioli S, Fedeli A, et al. Exploring response to immunotherapy in nonsmall cell lung cancer using delta-radiomics. Cancers (Basel) 2022;14:350 
  49. Li Wen Y, Leech M. Review of the role of radiomics in tumour risk classification and prognosis of cancer. Anticancer Res 2020;40:3605-3618  https://doi.org/10.21873/anticanres.14350
  50. Chen Q, Zhang L, Mo X, You J, Chen L, Fang J, et al. Current status and quality of radiomic studies for predicting immunotherapy response and outcome in patients with nonsmall cell lung cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2021;49:345-360  https://doi.org/10.1007/s00259-021-05509-7
  51. Chetan MR, Gleeson FV. Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives. Eur Radiol 2021;31:1049-1058  https://doi.org/10.1007/s00330-020-07141-9