DOI QR코드

DOI QR Code

Total Bilirubin Level as a Predictor of Suboptimal Image Quality of the Hepatobiliary Phase of Gadoxetic Acid-Enhanced MRI in Patients with Extrahepatic Bile Duct Cancer

  • Jeong Ah Hwang (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Ji Hye Min (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Seong Hyun Kim (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Seo-Youn Choi (Department of Radiology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine) ;
  • Ji Eun Lee (Department of Radiology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine) ;
  • Ji Yoon Moon (Department of Radiology, Kangdong Seong-Sim Hospital, Hallym University College of Medicine)
  • 투고 : 2021.03.03
  • 심사 : 2021.10.30
  • 발행 : 2022.04.01

초록

Objective: This study aimed to determine a factor for predicting suboptimal image quality of the hepatobiliary phase (HBP) of gadoxetic acid-enhanced MRI in patients with extrahepatic bile duct (EHD) cancer before MRI examination. Materials and Methods: We retrospectively evaluated 259 patients (mean age ± standard deviation: 68.0 ± 8.3 years; 162 male and 97 female) with EHD cancer who underwent gadoxetic acid-enhanced MRI between 2011 and 2017. Patients were divided into a primary analysis set (n = 184) and a validation set (n = 75) based on the diagnosis date of January 2014. Two reviewers assigned the functional liver imaging score (FLIS) to reflect the HBP image quality. The FLIS consists of the sum of three HBP features, each scored on a 0-2 scale: liver parenchymal enhancement, biliary excretion, and signal intensity of the portal vein. Patients were classified into low-FLIS (0-3) or high-FLIS (4-6) groups. Multivariable analysis was performed to determine a predictor of low FLIS using serum biochemical and imaging parameters of cholestasis severity. The optimal cutoff value for predicting low FLIS was obtained using receiver operating characteristic analysis, and validation was performed. Results: Of the 259 patients, 140 (54.0%) and 119 (46.0%) were classified into the low-FLIS and high-FLIS groups, respectively. In the primary analysis set, total bilirubin was an independent factor associated with low FLIS (adjusted odds ratio per 1-mg/dL increase, 1.62; 95% confidence interval [CI], 1.32-1.98). The optimal cutoff value of total bilirubin for predicting low FLIS was 2.1 mg/dL with a sensitivity of 95.1% (95% CI: 88.9-98.4) and a specificity of 89.0% (95% CI: 80.2-94.9). In the validation set, the total bilirubin cutoff showed a sensitivity of 92.1% (95% CI: 78.6-98.3) and a specificity of 83.8% (95% CI: 68.0-93.8). Conclusion: Serum total bilirubin before acquisition of gadoxetic acid-enhanced MRI may help predict suboptimal HBP image quality in patients with EHD cancer.

키워드

참고문헌

  1. Reimer P, Schneider G, Schima W. Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: properties, clinical development and applications. Eur Radiol 2004;14:559-578 
  2. Balci NC, Semelka RC. Contrast agents for MR imaging of the liver. Radiol Clin North Am 2005;43:887-898, viii 
  3. Tschirch FT, Struwe A, Petrowsky H, Kakales I, Marincek B, Weishaupt D. Contrast-enhanced MR cholangiography with Gd-EOB-DTPA in patients with liver cirrhosis: visualization of the biliary ducts in comparison with patients with normal liver parenchyma. Eur Radiol 2008;18:1577-1586 
  4. Park MJ, Kim YK, Lim S, Rhim H, Lee WJ. Hilar cholangiocarcinoma: value of adding DW imaging to gadoxetic acid-enhanced MR imaging with MR cholangiopancreatography for preoperative evaluation. Radiology 2014;270:768-776 
  5. Sun HY, Lee JM, Park HS, Yoon JH, Baek JH, Han JK, et al. Gadoxetic acid-enhanced MRI with MR cholangiography for the preoperative evaluation of bile duct cancer. J Magn Reson Imaging 2013;38:138-147 
  6. Pietryga JA, Burke LM, Marin D, Jaffe TA, Bashir MR. Respiratory motion artifact affecting hepatic arterial phase imaging with gadoxetate disodium: examination recovery with a multiple arterial phase acquisition. Radiology 2014;271:426-434 
  7. Tamada T, Ito K, Sone T, Yamamoto A, Yoshida K, Kakuba K, et al. Dynamic contrast-enhanced magnetic resonance imaging of abdominal solid organ and major vessel: comparison of enhancement effect between Gd-EOB-DTPA and Gd-DTPA. J Magn Reson Imaging 2009;29:636-640 
  8. Kaur H, Hindman NM, Al-Refaie WB, Arif-Tiwari H, Cash BD, Chernyak V, et al. ACR Appropriateness Criteria® suspected liver metastases. J Am Coll Radiol 2017;14:S314-S325 
  9. Ichikawa T, Saito K, Yoshioka N, Tanimoto A, Gokan T, Takehara Y, et al. Detection and characterization of focal liver lesions: a Japanese phase III, multicenter comparison between gadoxetic acid disodium-enhanced magnetic resonance imaging and contrast-enhanced computed tomography predominantly in patients with hepatocellular carcinoma and chronic liver disease. Invest Radiol 2010;45:133-141 
  10. Choi SY, Kim YK, Min JH, Cha DI, Jeong WK, Lee WJ. The value of gadoxetic acid-enhanced MRI for differentiation between hepatic microabscesses and metastases in patients with periampullary cancer. Eur Radiol 2017;27:4383-4393 
  11. Lee NK, Kim S, Kim GH, Heo J, Seo HI, Kim TU, et al. Significance of the "delayed hyperintense portal vein sign" in the hepatobiliary phase MRI obtained with Gd-EOB-DTPA. J Magn Reson Imaging 2012;36:678-685 
  12. Takao H, Akai H, Tajima T, Kiryu S, Watanabe Y, Imamura H, et al. MR imaging of the biliary tract with Gd-EOB-DTPA: effect of liver function on signal intensity. Eur J Radiol 2011;77:325-329 
  13. Bastati N, Beer L, Mandorfer M, Poetter-Lang S, Tamandl D, Bican Y, et al. Does the functional liver imaging score derived from gadoxetic acid-enhanced MRI predict outcomes in chronic liver disease? Radiology 2020;294:98-107 
  14. Bastati N, Wibmer A, Tamandl D, Einspieler H, Hodge JC, Poetter-Lang S, et al. Assessment of orthotopic liver transplant graft survival on gadoxetic acid-enhanced magnetic resonance imaging using qualitative and quantitative parameters. Invest Radiol 2016;51:728-734 
  15. Lee DH, Kim B, Lee ES, Kim HJ, Min JH, Lee JM, et al. Radiologic evaluation and structured reporting form for extrahepatic bile duct cancer: 2019 consensus recommendations from the Korean Society of Abdominal Radiology. Korean J Radiol 2021;22:41-62 
  16. Kim YK, Lee MW, Lee WJ, Kim SH, Rhim H, Lim JH, et al. Diagnostic accuracy and sensitivity of diffusion-weighted and of gadoxetic acid-enhanced 3-T MR imaging alone or in combination in the detection of small liver metastasis (≤ 1.5 cm in diameter). Invest Radiol 2012;47:159-166 
  17. Holzapfel K, Bruegel M, Eiber M, Ganter C, Schuster T, Heinrich P, et al. Characterization of small (≤ 10 mm) focal liver lesions: value of respiratory-triggered echo-planar diffusion-weighted MR imaging. Eur J Radiol 2010;76:89-95 
  18. Jeon SK, Lee JM, Joo I, Lee DH, Ahn SJ, Woo H, et al. Magnetic resonance with diffusion-weighted imaging improves assessment of focal liver lesions in patients with potentially resectable pancreatic cancer on CT. Eur Radiol 2018;28:3484-3493 
  19. Nino-Murcia M, Olcott EW, Jeffrey RB Jr, Lamm RL, Beaulieu CF, Jain KA. Focal liver lesions: pattern-based classification scheme for enhancement at arterial phase CT. Radiology 2000;215:746-751 
  20. Mendez RJ, Schiebler ML, Outwater EK, Kressel HY. Hepatic abscesses: MR imaging findings. Radiology 1994;190:431-436 
  21. Bachler P, Baladron MJ, Menias C, Beddings I, Loch R, Zalaquett E, et al. Multimodality imaging of liver infections: differential diagnosis and potential pitfall. Radiographics 2016;36:1001-1023 
  22. Merkle EM, Zech CJ, Bartolozzi C, Bashir MR, Ba-Ssalamah A, Huppertz A, et al. Consensus report from the 7th international forum for liver magnetic resonance imaging. Eur Radiol 2016;26:674-682 
  23. Bashir MR, Gupta RT, Davenport MS, Allen BC, Jaffe TA, Ho LM, et al. Hepatocellular carcinoma in a North American population: does hepatobiliary MR imaging with Gd-EOB-DTPA improve sensitivity and confidence for diagnosis? J Magn Reson Imaging 2013;37:398-406 
  24. Cruite I, Schroeder M, Merkle EM, Sirlin CB. Gadoxetate disodium-enhanced MRI of the liver: part 2, protocol optimization and lesion appearance in the cirrhotic liver. AJR Am J Roentgenol 2010;195:29-41 
  25. Neri E, Bali MA, Ba-Ssalamah A, Boraschi P, Brancatelli G, Alves FC, et al. ESGAR consensus statement on liver MR imaging and clinical use of liver-specific contrast agents. Eur Radiol 2016;26:921-931 
  26. Ricke J, Seidensticker M. Molecular imaging and liver function assessment by hepatobiliary MRI. J Hepatol 2016;65:1081-1082 
  27. Ni Y, Lukito G, Marchal G, Cresens E, Yu J, Petre C, et al. Potential role of bile duct collaterals in the recovery of the biliary obstruction: experimental study in rats using microcholangiography, histology, serology and magnetic resonance imaging. Hepatology 1994;20:1557-1566 
  28. Stanca C, Jung D, Meier PJ, Kullak-Ublick GA. Hepatocellular transport proteins and their role in liver disease. World J Gastroenterol 2001;7:157-169 
  29. Elferink RP, Paulusma CC. MRP2 in cholestasis: putting down the anchor. J Hepatol 2015;63:1309-1310 
  30. Aslam A, Wasnik AP, Shi J, Sahai V, Mendiratta-Lala M. Intraductal papillary neoplasm of the bile duct (IPNB): CT and MRI appearance with radiology-pathology correlation. Clin Imaging 2020;66:10-17 
  31. Fraser IA, Shaffer P, Tuttle SV, Lessler MA, Ellison EC, Carey LC. Hepatic recovery after biliary decompression of experimental obstructive jaundice. Am J Surg 1989;158:423-427 
  32. Pellegrini CA, Thomas MJ, Way LW. Bilirubin and alkaline phosphatase values before and after surgery for biliary obstruction. Am J Surg 1982;143:67-73