DOI QR코드

DOI QR Code

Validation of the neutron lead transport for fusion applications

  • Received : 2021.05.10
  • Accepted : 2021.09.02
  • Published : 2022.03.25

Abstract

Lead is an important material, both for fusion or fission reactors. The cross sections of natural lead should be validated because lead is a main component of lithium-lead modules suggested for fusion power plants and it directly affects the crucial variable, tritium breeding ratio. The presented study discusses a validation of the lead transport libraries by dint of the activation of carefully selected activation samples. The high emission standard 252Cf neutron source was used as a neutron source for the presented validation experiment. In the irradiation setup, the samples were placed behind 5 and 10 cm of the lead material. Samples were measured using a gamma spectrometry to infer the reaction rate and compared with MCNP6 calculations using ENDF/B-VIII.0 lead cross sections. The experiment used validated IRDFF-II dosimetric reactions to validate lead cross sections, namely 197Au(n, 2n)196Au, 58Ni(n,p)58Co, 93Nb(n, 2n)92mNb, 115In(n,n')115mIn, 115In(n,γ)116mIn, 197Au(n,γ)198Au and 63Cu(n,γ)64Cu reactions. The threshold reactions agree reasonably with calculations; however, the experimental data suggests a higher thermal neutron flux behind lead bricks. The paper also suggests 252Cf isotropic source as a valuable tool for validation of some cross-sections important for fusion applications, i.e. reactions on structural materials, e.g. Cu, Pb, etc.

Keywords

Acknowledgement

The presented work has been realized within Institutional Support by the Ministry of Industry and Trade and with the use of theinfrastructure Reactors LVR-15 and LR-0, which is financially supported by the Ministry of Education, Youth and Sports - project LM2015074, the SANDA project funded under H2020-EURATOM-1.1 contract 847552.

References

  1. J. Jordanova, U. Fischer, P. Pereslavtsev, Y. Poitevin, et al., Parametric neutronic analysis of HCLL blanket for DEMO fusion reactor utilizing vacuum vessel ITER FDR design, Fusion Eng. Des. 81 (19) (2006) 2213-2220. https://doi.org/10.1016/j.fusengdes.2006.02.001
  2. L.V. Boccaccini, G. Aiello, J. Aubert, C. Bachmann, T. Barrett, et al., Objectives and status of EUROfusion DEMO blanket studies, Fusion Eng. Des. 109-111 (Pt. B) (2016) 1199-1206. https://doi.org/10.1016/j.fusengdes.2015.12.054
  3. P. Batistoni, M. Angelone, U. Fischer, A. Klix, I. Kodeli, D. Leichtle, et al., Neutronics experiments for uncertainty assessment of tritium breeding in HCPB and HCLL blanket mock-ups irradiated with 14 MeV neutrons, Nucl. Fusion 52 (8) (2012), 083014. https://doi.org/10.1088/0029-5515/52/8/083014
  4. S. Kwon, M. Ohta, S. Sato, C. Konno, K. Ochiai, Lead benchmark experiment with DT neutrons at JAEA/FNS, Fusion Science andTechnology (2017) 362-367.
  5. K.J.R. Rosman, P.D.P. Taylor, Isotopic compositions of the elements, 1997, Pure Appl. Chem. 70 (1998) 217. https://doi.org/10.1351/pac199870010217
  6. T. Goorley, et al., Initial MCNP6 release overview, Nucl. Tech. 180 (2012) 298-315. https://doi.org/10.13182/NT11-135
  7. M. Kost al, M. Schulc, et al., Validation of zirconium isotopes (n,γ) and (n,2n) cross sections in a comprehensive LR-0 reactor operative parameters set, Appl. Radiat. Isot. 128 (2017) 92-100. https://doi.org/10.1016/j.apradiso.2017.06.023
  8. D.A. Brown, M.B. Chadwick, R. Capote, et al., ENDF/B-VIII.0.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148 (2018) 1-142. https://doi.org/10.1016/j.nds.2018.02.001
  9. M.B. Chadwick, M. Herman, P. Oblozinsky, et al., ENDF/B-VII.1: nuclear data for science and Technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (2011) 2887-2996. https://doi.org/10.1016/j.nds.2011.11.002
  10. A.J.M. Plompen, O. Cabellos, C. De Saint Jean, M. Fleming, A. Algora, M. Angelone, et al., The joint evaluated fission and fusion nuclear data library, JEFF-3.3, The European Physical Journal A 56 (7) (2020).
  11. A. Trkov, P.J. Griffin, S.P. Simakov, L.R. Greenwood, K.I. Zolotarev, R. Capote, et al., IRDFF-II: an updated neutron metrology library, Nucl. Data Sheets 163 (2020) 1-108. https://doi.org/10.1016/j.nds.2019.12.001
  12. W. Mannhart, Status of the Evaluation of the Neutron Spectrum of 252Cf(sf), in: IAEA Technical Report INDC(NDS)-0540, IAEA, Vienna, 2008. Presentation available at, www-nds.iaea.org/standards-cm-oct-2008/6.PDF.
  13. S. Manojlovic, A. Trkov, "Nuclear Cross Section Measurement Analysis in the Californium-252 Spectrum with the Monte Carlo Method", Conf, Nuclear Energy for New Europe, Ljubljana, Slovenia, 2011 contribution 307.
  14. W. Mannhart, Response of activation reactions in the neutron field of 252Cf(s.f, in: IAEA Technical Report Series No. 452, IAEA, Vienna, Austria, 2006, pp. 30-45.
  15. M. Schulc, M. Kostal, et al., Validation of IRDFF-II library by means of 252Cf spectral averaged cross sections, Appl. Radiat. Isot. 155 (2020) 108937. https://doi.org/10.1016/j.apradiso.2019.108937
  16. J.-C. Jaboulay, G. Aiello, J. Aubert, A. Morin, M. Troisne, Nuclear analysis of the HCLL blanket for the European DEMO, Fusion Eng. Des. 124 (November 2017) 896-900. https://doi.org/10.1016/j.fusengdes.2017.01.050
  17. M. Schulc, M. Kostal, R. Capote, et al., Validation of selected (n,2n) dosimetry reactions in IRDFF-1.05 library, Appl. Radiat. Isot. 143 (2019) 132-140. https://doi.org/10.1016/j.apradiso.2018.10.027
  18. M. Schulc, M. Kostal, et al., Application of 252Cf neutron source for precise nuclear data experiments, Appl. Radiat. Isot. 151 (2019) 187-195. https://doi.org/10.1016/j.apradiso.2019.06.012