DOI QR코드

DOI QR Code

Power control of CiADS core with the intensity of the proton beam

  • Yin, Kai (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Ma, Wenjing (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Cui, Wenjuan (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • He, Zhiyong (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Li, Xinxin (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Dang, Shiwu (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Yang, Feng (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Guo, Yuhui (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Duan, Limin (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Li, Meng (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Hou, Yikai (Institute of Modern Physics, Chinese Academy of Sciences)
  • Received : 2021.07.15
  • Accepted : 2021.10.10
  • Published : 2022.04.25

Abstract

This paper reports the control method for the core power of the China initiative Accelerator Driven System (CiADS) facility. In the CiADS facility, an intense external neutron source provided by a proton accelerator coupled to a spallation target is used to drive a sub-critical reactor. Without any control rod inside the sub-critical reactor, the core power is controlled by adjusting the proton beam intensity. In order to continuously change the beam intensity, an adjustable aperture is considered to be used at the Low Energy Beam Transport (LEBT) line of the accelerator. The aperture size is adjusted based on the Proportional Integral Derivative (PID) controllers, by comparing either the setting beam intensity or the setting core power with the measured value. To evaluate the proposed control method, a CiADS core model is built based on the point reactor kinetics model with six delayed neutron groups. The simulations based on the CiADS core model have indicated that the core power can be controlled stably by adjusting the aperture size. The response time in the adjustment of the core power depends mainly on the adjustment time of the beam intensity.

Keywords

References

  1. H. Ait Abderrahim, J. Galambos, Y. Gohar, S. Henderson, G. Lawrence, T. Mcmanamy, Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production, DOE White Paper on ADS 1.1, 2010, pp. 1-23.
  2. M. Salvatores, I. Slessarev, A. Tchistiakov, G. Ritter, The potential of accelerator-driven systems for transmutation or power production using thorium or uranium fuel cycles, Nucl. Sci. Eng. 126 (1997) 333-340, https://doi.org/10.13182/NSE97-A24485.
  3. IAEA, Emerging Nuclear Energy and Transmutation Systems: Core Physics and Engineering Aspects, International Atomic Energy Agency IAEA-TECDOC-1356, August 2003.
  4. W.L. Zhan, H.S. Xu, Advanced fission energy program-ADS transmutation system, Bull. Chin. Acad. Sci. 27 (2012) 375-381. https://doi.org/10.3969/j.issn.1000-3045.2012.03.017
  5. W. Zeng, T. Hui, J. Xie, T. Yu, Dynamic simulation of CIADS core power control based on the duty ratio of the proton beam, Prog. Nucl. Energy 125 (2020) 103390, https://doi.org/10.1016/j.pnucene.2020.103390.
  6. Y.M. Kim, S.P. Yun, H.S. Kim, H.J. Kwon, Beam characterization of the low-flux proton beam line at KOMAC for application to radiation effect testing, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 950 (2019) 162971, https://doi.org/10.1016/j.nima.2019.162971.
  7. D.G. Sahani, S. Sharma, P. Sharma, D. Sharma, S. Hussain, Effects of Alignment of Adjustable Collimator on Dosimetric Parameters of a Telecobalt Machine, Technology in Cancer Research & Treatment 12, 2012, https://doi.org/10.7785/tcrt.2012.500308.
  8. L. Weissman, D. Berkovits, A. Arenshtam, Y. Ben-Aliz, Y. Buzaglo, O. Dudovitch, Y. Eisen, I. Eliahu, G. Feinberg, I. Fishman, I. Gavish Segev, I. Gertz, A. Grin, S. Halfon, D. Har-Even, Y. Haruvy, D. Hirschmann, T. Hirsh, Z. Horovitz, E. Zemach, SARAF Phase i linac in 2012, J. Instrum. 9 (2014), https://doi.org/10.1088/1748-0221/9/05/T05004. T05004-T05004.
  9. H. Niu, Y. Li, Y. He, B. Zhang, Z. Wang, W. Chen, C. Yuan, H. Jia, A novel adjustable aperture for beam current controlling at China-ADS low energy beam transport line, Qiangjiguang Yu Lizishu, High Power Laser and Particle Beams 32 (2020), https://doi.org/10.11884/HPLPB202032.190393.
  10. S.H. Liu, Z.J. Wang, H. Jia, Y. He, W.P. Dou, Y.S. Qin, W.L. Chen, F. Yan, Physics design of the CIADS 25MeV demo facility, Nucl. Instrum. Methods Phys. Res., Sect. A 843 (2017) 11-17, https://doi.org/10.1016/j.nima.2016.10.055.
  11. Z. Wang, Y. He, H. Jia, W. Dou, W.L. Chen, X.L. Zhang, S. Liu, C. Feng, Y. Tao, W. Wang, J. Wu, S. Zhang, H.-W. Zhao, Beam commissioning for a superconducting proton linac, Physical Review Accelerators and Beams 19 (2016), https://doi.org/10.1103/PhysRevAccelBeams.19.120101.
  12. G. Battistoni, T. Boehlen, F. Cerutti, P.W. Chin, L.S. Esposito, A. Fasso, A. Ferrari, A. Lechner, A. Empl, A. Mairani, A. Mereghetti, P.G. Ortega, J. Ranft, S. Roesler, P.R. Sala, V. Vlachoudis, G. Smirnov, Overview of the FLUKA code, Ann. Nucl. Energy 82 (2015) 10-18, https://doi.org/10.1016/j.anucene.2014.11.007.
  13. P.K. Romano, B. Forget, The OpenMC Monte Carlo particle transport code, Ann. Nucl. Energy 51 (2013) 274-281, https://doi.org/10.1016/j.anucene.2012.06.040.
  14. W.M. Schikorr, Assessments of the kinetic and dynamic transient behavior of sub-critical systems (ADS) in comparison to critical reactor systems, Nucl. Eng. Des. 210 (2001) 95-123, https://doi.org/10.1016/S0029-5493(01)00431-9.
  15. A. Cammi, L. Luzzi, A.A. Porta, M.E. Ricotti, Modelling and control strategy of the Italian LBE-XADS, Prog. Nucl. Energy 48 (2006) 578-589, https://doi.org/10.1016/j.pnucene.2006.03.006.
  16. Q. Zhang, L. Gu, T. Peng, X. Sheng, Safety analysis of CiADS sub-critical reactor fuel cladding under beam transients, Hedongli Gongcheng/Nuclear Power Engineering 39 (2018) 51-57, https://doi.org/10.13832/j.jnpe.2018.05.0051.