Acknowledgement
This research is supported by the National Natural Science Foundation of China (12005073),the Project of Nuclear Power Technology Innovation Center of Science Technology and Industry for National Defense (HDLCXZX-2021-HD-033, HDLCXZX-2019-ZH-26), Science and Technology on Reactor System Design Technology Laboratory Foundation Project (HT-KFKT-10-2018005).
References
- J.H. McFadden, et al., RETRAN-02: a Program for Transient Thermal-Hydraulic Analysis of Complex Fluid Systems, Volume 1: Theory and Numerics (Revision 2), EPRI-NP 1850-R.2-V.1, Electric Power Research Institute, Palo Alto, Calif, 1984.
- NUREG/CR-6724, TRAC-M/FORTRAN 90 (Version 3.0) Theory Manual, U.S.Nuclear Regulatory Commission, 2001.
- NUREG/CR-5535, RELAP5/MOD3.3 Code Manual Volume I, U.S.Nuclear Regulatory Commission, 2001.
- ML120060218, TRACE V5.0 Theory Manual, U.S. Nuclear Regulatory Commission. USNRC, 2010.
- INL/EXT-14-31366 (Revision 2), RELAP-7 Theory Manual, U.S. Idaho National Laboratory, 2016.
- P. Emonot, A. Souyri, J.L. Gandrille, F. Barre, CATHARE- 3: a new system code for thermal-hydraulics in the context of the NEPTUNE project, Nucl. Eng. Des. 241 (2011) 4476-4481. https://doi.org/10.1016/j.nucengdes.2011.04.049
- D. Bertolotto, A. Manera, Improvement of the one-dimensional dissolved-solute convection equation using the QUICKEST-ULTIMATE algorithm, Nucl. Eng. Des. 241 (2011) 245-256. https://doi.org/10.1016/j.nucengdes.2010.10.021
- D. Wang, J.H. Mahaffy, J. Staudenmeier, C.G. Thurston, Implementation and assessment of high-resolution numerical methods in TRACE, Nucl. Eng. Des. 263 (2013) 327-341. https://doi.org/10.1016/j.nucengdes.2013.05.015
- C. Frepoli, J.H. Mahaffy, K. Ohkawa, Notes on the implementation of a fully-implicit numerical scheme for a two-phase three-field flow model, Nucl. Eng. Des. 225 (2003) 191-217. https://doi.org/10.1016/S0029-5493(03)00159-6
- V.A. Mousseau, Implicitly balanced solution of the two-phase flow equations coupled to nonlinear heat conduction, J. Comput. Phys. 200 (2004) 104-132. https://doi.org/10.1016/j.jcp.2004.03.009
- L. Zou, H.H. Zhao, H.B. Zhang, Applications of high-resolution spatial discretization scheme and Jacobian-free Newton-Krylov method in two-phase flow problems, Ann. Nucl. Energy 83 (2015) 101-107. https://doi.org/10.1016/j.anucene.2015.04.016
- L. Zou, H.H. Zhao, H.B. Zhang, Solving phase appearance/disappearance two-phase flow problems with high resolution staggered grid and fully implicit schemes by the Jacobian-free Newton-Krylov Method, Comput. Fluid 129 (2016) 179-188. https://doi.org/10.1016/j.compfluid.2016.02.008
- L. Zou, H.H. Zhao, H.B. Zhang, Implicitly solving phase appearance and disappearance problems using two-fluid six-equation model, Prog. Nucl. Energy 88 (2016) 198-210. https://doi.org/10.1016/j.pnucene.2015.12.006
- L. Zou, H.H. Zhao, H.B. Zhang, Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model, Prog. Nucl. Energy 100 (2017) 427-428. https://doi.org/10.1016/j.pnucene.2017.07.008
- A. Ashrafizadeh, C.B. Devaud, N.U. Aydemir2, A Jacobian-free Newton-Krylov method for thermalhydraulics simulations, Int. J. Numer. Methods Fluid. 77 (2015) 590-615. https://doi.org/10.1002/fld.3999
- G.J. Hu, T. Kozlowski, Application of implicit Roe-type scheme and Jacobian-free Newton-Krylov method to two-phase flow problems, Ann. Nucl. Energy 119 (2018) 180-190. https://doi.org/10.1016/j.anucene.2018.05.003
- R.A.A. Saleem, T. Kozlowski, Development of accurate and stable two-phase two-fluid model solver, in: International Congress on Advances in Nuclear Power Plants, ICAPP 2014, American Nuclear Society, 2014.
- Lian Hu, Deqi Chen, Yanping Huang, et al., JFNK method with a physics-based preconditioner for the fully implicit solution of one-dimensional drift-flux model in boiling two-phase flow, Appl. Therm. Eng. 116 (2017) 610-622. https://doi.org/10.1016/j.applthermaleng.2017.01.087
- A. Hajizadeh, H. Kazeminejad, S. Talebi, A new numerical method for solution of boiling flow using combination of SIMPLE and Jacobian-free Newton-Krylov algorithms, Prog. Nucl. Energy 95 (2017) 48-60. https://doi.org/10.1016/j.pnucene.2016.11.005
- H. Stadtke, Gasdynamic Aspects of Two-phase Flow: Hyperbolicity, Wave Propagation Phenomena, and Related Numerical Methods, Wiley-VCH, 2006.
- A. Prosperetti, G. Tryggvason, Computational Methods for Multiphase Flow, Cambridge university press, 2009.
- R.J. LeVeque, Numerical Methods for Conservation Laws, 1992, ISBN 3-7643-2464-3.
- C.W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Advanced numerical approximation of nonlinear hyperbolic equations (1998) 325-432. Springer, Berlin, Heidelberg.
- J. Smit, M.V.S. Annaland, J.A.M. Kuipers, Grid adaptation with WENO schemes for non-uniform grids to solve convection-dominated partial differential equations, Chem. Eng. Sci. 60 (2005) 2609-2619. https://doi.org/10.1016/j.ces.2004.12.017
- D. Knoll, D. Keyes, Jacobian-Free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys. 193 (2004) 357-397. https://doi.org/10.1016/j.jcp.2003.08.010
- Y.L. Xu, A Matrix Free Newton/Krylov Method for Coupling Complex Multi-Physics Subsystems, Purdue University, 2004.
- Behzad R. Ahrabi, Dimitri J. Mavriplis, A scalable solution strategy for high-order stabilized finite-element solvers using an implicit line preconditioner, Comput. Methods Appl. Mech. Eng. 341 (2018) 956-984. https://doi.org/10.1016/j.cma.2018.07.026
- R.C. Mittal, A. HAl-Kurdi, An efficient method for constructing an ILU preconditioner for solving large sparse nonsymmetric linear systems by the GMRES method, Comput. Math. Appl. 45 (2003) 1757-1772. https://doi.org/10.1016/S0898-1221(03)00154-8
- R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
- G.F. Hewitt, J.M. Delhaye, N. Zuber, Numerical Benchmark Test, Volume 3 of Multiphase Science and Technology, Wiley & Sons Ltd, 1987.