과제정보
This research was supported by the Nuclear R&D program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2018M2A2B3A06071698).
참고문헌
- A.A. Basfar, O.I. Fageeha, N. Kunnummal, A.G. Chmielewski, J. Licki, A. Pawelec, Z. Zimek, J. Warych, A review on electron beam flue gas treatment (EBFGT) as a multicomponent air pollution control technology, Nukleonika 55 (2010) 271-277.
- I. Calinescu, D. Martin, A. Chmielewski, D. lghigeanu, E-Beam SO2 and NOx removal from flue gases in the presence of fine water droplets, Radiat. Phys. Chem. 85 (2013) 130-138. https://doi.org/10.1016/j.radphyschem.2012.10.008
- E. Zwolinska, V. Gogulancea, Y. Sun, V. Lavric, A. Chmielewski, A kinetic sensitivity analysis for the SO2 and NOx removal using the electron beam technology, Radiat. Phys. Chem. 138 (2017) 29-36. https://doi.org/10.1016/j.radphyschem.2017.05.004
- A.G. Chmielewski, E. Zwolinska, J. Licki, Y. Sun, Z. Zimek, S. Bulka, A hybrid plasma-chemical system for high-NOx flue gas treatment, Radiat. Phys. Chem. 144 (2018) 1-7. https://doi.org/10.1016/j.radphyschem.2017.11.005
- M. Gauss, G. Myhre, I.S.A. Isaksen, V. Grewe, G. Pitari, O. Wild, W.J. Collins, F.J. Dentener, K. Ellingsen, L.K. Gohar, D.A. Hauglustaine, D. Iachetti, J.-F. Lamarque, E. Mancini, L.J. Mickley, M.J. Prather, J.A. Pyle, M.G. Sanderson, K.P. Shine, D.S. Stevenson, K. Sudo, S. Szopa, G. Zeng, Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere, Atmos. Chem. Phys. 6 (2006) 575-599. https://doi.org/10.5194/acp-6-575-2006
- G. Busca, L. Lietti, G. Ramis, F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review, Appl. Catal. B Environ. 18 (1998) 1-36. https://doi.org/10.1016/S0926-3373(98)00040-X
- G. Cheng, C. Zhang, Desulfurization and denitrification technologies of coal-fired flue gas, Pol. J. Environ. Stud. 27 (2018) 481-489. https://doi.org/10.15244/pjoes/75959
- H.-W. Park, S. Uhm, Various technologies for simultaneous removal of NOx and SO2 from flue gas, Applied Chemistry for Engineering 28 (2017) 607-618. https://doi.org/10.14478/ACE.2017.1092
- A.A. Basfar, O.I. Fageeha, N. Kunnummal, S. Al-Ghamdi, A.G. Chmielewski, J.A. Pawelec, B. Tyminski, Z. Zimek, Electron beam flue gas treatment (EBFGT) technology for simultaneous removal of SO2 and NOx from combustion of liquid fuels, Fuel 87 (2008) 1446-1452. https://doi.org/10.1016/j.fuel.2007.09.005
- O. Tokunaga, H. Namba, K. Hirota, Experiments on chemical reactions in electron-beam-induced NOx/SO2 removal, Non-Thermal Plasma Techniques for Pollution Control 34 (1993) 55-62.
- J. McKeown, Radiation processing using electron linacs, IEEE Trans. Nucl. Sci. 32 (1985) 3292-3296. Ns. https://doi.org/10.1109/TNS.1985.4334347
- R. Mehnert, Review of industrial applications of electron accelerators, Nucl. Instrum. Methods Phys. Res. B 13 (1996) 81-87. https://doi.org/10.1016/0168-583X(95)01344-X
- N.W. Frank, Introduction and historical review of electron beam processing for environmental pollution control, Radiat. Phys. Chem. 45 (1993) 989-1002. https://doi.org/10.1016/0969-806X(94)00156-E
- A.G. Chmielewski, Industrial applications of electron beam flue gas treatment-from laboratory to the practice, Radiat. Phys. Chem. 76 (2007) 1480-1484. https://doi.org/10.1016/j.radphyschem.2007.02.056
- A.G. Chmielewski, Electron accelerators for environmental protection, Reviews of accelerator science and technology 4 (2011) 147-159. https://doi.org/10.1142/S1793626811000501
- A.G. Chmielewski, J. Licki, A. Pawelec, B. Tyminski, Z. Zimek, Operational experience of the industrial plant for electron beam flue gas treatment, Radiat. Phys. Chem. 71 (2004) 439-442.
- B.J. Mao, Process of Flue Gas Desulphuration with Electron Beam Irradiation in china, IAEA-TECDOC-1473, Radiation Treatment of Gaseous and Liquid Effluents for Contaminant Removal, 2005, pp. 45-51.
- Y. Doi, I. Nakanishi, Y. Konno, Operational experience of a commercial scale plant of electron beam purification of flue gas, Radiat. Phys. Chem. 57 (2000) 495-499. https://doi.org/10.1016/S0969-806X(99)00496-X
- V.B. Men'kin, I.E. Makarov, A.K. Pikaev, Pulse radiolysis study of reaction rates of OH and O- radicals with ammonia in aqueous solutions, Radiation Chemistry 22 (1989) 333-336.
- S. Seo, S. Jo, Y. Son, T. Kim, T. Kim, S. Yu, A preliminary study on effect of additive in the removal of NOx and SO2 by electron beam irradiation, Chem. Eng. J. 287 (2020) 124083.
- S. Jo, K. Kim, S. Seo, T. Kim, S. Yu, T. Kim, Y. Son, A study on additives to improve electron beam technology for NOx and SO2 reduction, Radiat. Phys. Chem. 183 (2021) 109397. https://doi.org/10.1016/j.radphyschem.2021.109397
- E. Grusell, On the definition of absorbed dose, Radiat. Phys. Chem. 107 (2015) 131-135. https://doi.org/10.1016/j.radphyschem.2014.10.008
- A.G. Chmielewski, J. Licki, Electron beam flue gas treatment process for purification of exhaust gases with high SO2 concentrations, Nukleonika 53 (2008) 61-66.
- C.M. Deeley, A basic interpretation of the technical language of radiation processing, Radiat. Phys. Chem. 71 (2004) 503-507. https://doi.org/10.1016/j.radphyschem.2004.03.082
- M. Silindir, A.Y. Ozer, Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization, Fabad J. Pharm. Sci. 34 (2009) 43-53.
- J. Choi, H. Lee, J. Kim, K. Lee, J. Lee, S. Seo, K. Kang, M. Byun, Controlling the radiation degradation of carboxymethylcellulose solution, Polym. Degrad. Stabil. 93 (2008) 310-315. https://doi.org/10.1016/j.polymdegradstab.2007.10.014
- A.A. Basfar, K.A. Mohamed, A.J. Al-Abduly, T.S. Al-Kuraiji, A.A. Al-Shahrani, Degradation of diazinon contaminated waters by ionizing radiation, Radiat. Phys. Chem. 76 (2007) 1474-1479. https://doi.org/10.1016/j.radphyschem.2007.02.055
- R.J. Woods, A.K. Pikaev, Applied Radiation Chemistry: Radiation Processing, John Wiley & Sons, Inc., New York, USA, 1994.
- A. Pourmohammadbagher, E. Jamshidi, H. Ale-Ebrahim, B. Dabir, M. Mehrabani-Zeinabad, Simultaneous removal of gaseous pollutants with a novel swirl wet scrubber, Chem. Eng. Process 50 (2011) 773-779. https://doi.org/10.1016/j.cep.2011.06.001
- N.D. Hutson, R. Krzyzynska, R.K. Srivastava, Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber, Ind. Eng. Chem. Res. 47 (2008) 5825-5831. https://doi.org/10.1021/ie800339p
- S. Wang, Q. Zhang, G. Zhang, Z. Wang, P. Zhu, Effects of sintering flue gas properties on simultaneous removal of SO2 and NO by ammonia-Fe(II)EDTA absorption, J. Energy Inst. 90 (2017) 522-527. https://doi.org/10.1016/j.joei.2016.05.010
- J.-S. Chang, P.C. Looy, K. Nagai, T. Yoshioka, S. Aoki, A. Maezawa, Preliminary pilot plant tests of a corona discharge-electron beam hybrid combustion flue gas cleaning system, IEEE Trans. Ind. Appl. 32 (1996) 131-137. https://doi.org/10.1109/28.485824
- J. Kim, Y. Kim, B. Han, Electron-beam flue-gas treatment plant for thermal power station "Sviloza" AD in Bulgaria, J. Kor. Phys. Soc. 59 (2011) 3494-3498. https://doi.org/10.3938/jkps.59.3494
- E. Tan, S. Unal, A. Dogan, E. Letournel, F. Pellizzari, New "wet type" electron beam flue gas treatment pilot plant, Radiat. Phys. Chem. 119 (2016) 109-115. https://doi.org/10.1016/j.radphyschem.2015.10.007
- T.B. Petrova, G.M. Petrov, M.F. Wolford, J.L. Giuliani, H.D. Ladouceour, F. Hegeler, M.C. Myers, J.D. Sethian, Effective NOx remediation from a surrogate flue gas using the US NRL Electra electron beam facility, Phys. Plasmas 24 (2017), 023501. https://doi.org/10.1063/1.4975010
- A.G. Chmielewski, Y. Sun, Z. Zimek, S. Bulka, J. Licki, Mechanism of NOx removal by electron beam process in the presence of scavengers, Radiat. Phys. Chem. 65 (2002) 397-403. https://doi.org/10.1016/S0969-806X(02)00340-7
- J. Park, J. Ahn, K. Kim, Y. Son, Historic and futuristic review of electron beam technology for the treatment of SO2 and NOx in flue gas, Chem. Eng. J. 355 (2019) 351-366. https://doi.org/10.1016/j.cej.2018.08.103
- L. Zhao, Y. Sun, A.G. Chmielewski, A. Pawelec, S. Bulka, NO oxidation with NaClO, NaClO2, and NaClO3 solution using electron beam and a one stage absorption system, Plasma Chem. Plasma Process. 40 (2020) 433-447. https://doi.org/10.1007/s11090-019-10022-9
- N.L.K. Thiher, S.M. Schissel, J.L.P. Jessop, Analysis of methods to determine G-values of monomers polymerized via ionizing radiation, Radiat. Phys. Chem. 165 (2019) 108394. https://doi.org/10.1016/j.radphyschem.2019.108394
- J.C. Person, D.O. Ham, Removal of SO2 and NOx from stack gases by electron beam irradiation, Radiat. Phys. Chem. 31 (1988) 1-8.
- F. Busi, M. D'Angelantonio, Q.G. Mulazzani, O. Tubertini, Radiation induced NOx/SO2 emission control for industrial and power plants flue gas, Radiat. Phys. Chem. 31 (1988) 101-108.
- M.R. Cleland, R.A. Galloway, Ozone generation in air during electron beam processing, Physics Procedia 66 (2015) 586-594. https://doi.org/10.1016/j.phpro.2015.05.078
- M. Siwek, T. Edgecock, Application of electron beam water radiolysis for sewage sludge treatment-a review, Environ. Sci. Pollut. Res. 27 (2020) 42424-42448. https://doi.org/10.1007/s11356-020-10643-0
- Y. Son, K. Kim, K. Kim, J. Kim, Ammonia decomposition using electron beam, Plasma Chem. Plasma Process. 33 (2013) 617-629. https://doi.org/10.1007/s11090-013-9444-x
- M.F. Wolford, M.C. Myers, F. Hegeler, J.D. Sethian, NOx removal with multiple pulsed electron beam free of catalysts or reagents, Phys. Chem. Chem. Phys. 15 (2013) 4422-4427. https://doi.org/10.1039/c3cp50436k