과제정보
This work was supported by the project: National Key R&D Program of China (Grant No. 2019YFB1900700).
참고문헌
- J.R. Wolf, D.W. Akers, L.A. Neimark, Relocation of molten material to the TMI-2 lower head, Nucl. Saf. 35 (1994) 269-279.
- T.S. Kress, M.W. Jankowski, J. Joosten, et al., Chernobyl accident sequence, Nucl. Saf. 28 (1987) 1-9.
- Y. Kim, M. Kim, W. Kim, Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy, Energy Pol. 61 (2013) 822-828. https://doi.org/10.1016/j.enpol.2013.06.107
- P. Hofmann, S.J. Hagen, V. Noack, et al., Chemical-physical behavior of light water reactor core components tested under severe reactor accident conditions in the CORA facility, Nucl. Technol. 118 (3) (1997) 200-224. https://doi.org/10.13182/nt118-200
- N.J. Kalilaine, T. Lind, J. Stuckert, et al., The measurement of Ag/In/Cd release under air-ingress conditions in the QUENCH-18 bundle test, J. Nucl. Mater. 517 (2019) 315-327. https://doi.org/10.1016/j.jnucmat.2019.02.021
- I.K. Madni, X.-D. Guo, MELCOR modeling of the national research universal full-length high-temperature 2 experiment. nuclear technology, Nucl. Technol. 99 (2) (1992) 203-212. https://doi.org/10.13182/NT92-A34690
- Z. Hozer, L. Maroti, P. Windberg, et al., Behavior of VVER fuel rods tested under severe accident conditions in the CODEX facility, Nucl. Technol. 154 (3) (2006) 302-317. https://doi.org/10.13182/nt06-a3735
- T. Haste, M. Steinbruck, M. Barrachin, et al., A comparison of core degradation phenomena in the CORA, QUENCH, Phebus SFD and Phebus FP experiments, Nucl. Eng. Des. 283 (2015) 129-145.
- M. Schwarz, G. Hache, P.V.D. Hardt, F.P. Phebus, A severe accident research programme for current and advanced light water reactors, Nucl. Eng. Des. 187 (1) (1999) 47-69. https://doi.org/10.1016/S0029-5493(98)00257-X
- R. Gasser, R. Gauntt, S. Bourcier, Late-phase Melt Progression Experiment: MP-2. Results and Analysis, Nuclear Regulatory Commission, Div. of Systems Technology, Washington, DC (USA), 1997, https://doi.org/10.2172/501519.NUREG/CR-6167.
- Y.P. Zhang, S.P. Niu, L.T. Zhang, et al., A review on analysis of LWR severe accident, J. Nucl. Eng. Radiat. Sci. 1 (4) (2015) 1-20.
- L. Li, Y. Zhang, W. Tian, et al., MAAP5 simulation of the PWR severe accident induced by pressurizer safety valve stuck-open accident, Prog. Nucl. Energy 77 (2014) 141-151. https://doi.org/10.1016/j.pnucene.2014.06.014
- L. Li, M. Wang, W. Tian, et al., in: Severe accident analysis for a typical PWR using the MELCOR code 71, 2014, pp. 30-38.
- P. Chatelard, N. Reinke, S. Arndt, et al., ASTEC V2 severe accident integral code main features, current V2.0 modelling status, perspectives, Nucl. Eng. Des. 272 (6) (2014) 119-135. https://doi.org/10.1016/j.nucengdes.2013.06.040
- H. Ujita, N. Satoh, M. Naitoh, et al., Development of severe accident analysis code SAMPSON in IMPACT project, J. Nucl. Sci. Technol. 36 (11) (1999) 1076-1088. https://doi.org/10.1080/18811248.1999.9726300
- K. Vierow, Y. Liao, J. Johnson, et al., Severe accident analysis of a PWR station blackout with the MELCOR, MAAP4 and SCDAP/RELAP5 codes, Nucl. Eng. Des. 234 (1-3) (2004) 129-145. https://doi.org/10.1016/j.nucengdes.2004.09.001
- H. Austregesilo, C. Bals, K. Trambauer, Post-test calculation and uncertainty analysis of the experiment QUENCH-07 with the system code ATHLET-CD, Nucl. Eng. Des. 237 (15) (2007) 1693-1703. https://doi.org/10.1016/j.nucengdes.2007.02.019
- Y. Zvonarev, V. Kobzar, M. Budaev, et al., ASTEC and ICARE/CATHARE application to simulation of a VVER-1000 large break LOCA, J. Energy Eng. 4 (3) (2010) 29-36.
- G.H. Su, W.X. Tian, Y.P. Zhang, S.Z. Qiu, et al., Severe Accident Phenomenology of Light Water Reactors, National Defense Industry Press, 2016.
- P. Hofmann, S.J. Hagen, G. Schanz, et al., Reactor core materials interactions at very high temperatures, Nucl. Technol. 87 (1) (1989) 146-186.
- K. Mao, J. Wang, L. Li, et al., Development of cladding oxidation analysis code [COAC] and application for early stage severe accident simulation of AP1000, Prog. Nucl. Energy 85 (2015) 352-365. https://doi.org/10.1016/j.pnucene.2015.07.010
- J. Wang, W. Tian, Y. Zhang, et al., The development of Module In-vessel degraded severe accident Analysis Code MIDAC and the relevant research for CPR1000 during the station blackout scenario, Prog. Nucl. Energy 76 (2014) 44-54. https://doi.org/10.1016/j.pnucene.2014.05.015
- D. Wang, Y. Zhang, R. Chen, et al., Numerical simulation of zircaloy-water reaction based on the moving particle semi-implicit method and combined analysis with the MIDAC code for the nuclear-reactor core melting process, Prog. Nucl. Energy 118 (2020).
- L. Sepold, W. Hering, C. Homann, Experimental and Computational Results of the QUENCH-06 Test (OECD ISP-45), Wissenschaftliche Berichte Fzka, 2004.
- J. Stuckert, M. Steinbruck, Experimental results of the QUENCH-16 bundle test on air ingress, Prog. Nucl. Energy 71 (2014) 134-141. https://doi.org/10.1016/j.pnucene.2013.12.001
- X. Shi, X. Cao, Z. Liu, Oxidation behavior analysis of cladding during severe accidents with combined codes for Qinshan Phase II Nuclear Power Plant, Ann. Nucl. Energy 58 (2013) 246-254. https://doi.org/10.1016/j.anucene.2013.03.031
- R.E. Pawel, J.V. Cathcart, R.A. McKee, The kinetics of oxidation of zircaloy-4 in steam at high temperatures, J. Electrochem. Soc. 126 (7) (1979) 1105-1111, 1979. https://doi.org/10.1149/1.2129227
- L. Baker, L.C. Just, Studies of metal-water reactions at high temperatures III, in: Experimental and Theoretical Studies of the Zirconium-Water Reaction, Argonne National Laboratory, 1962, p. 406. ANL-6548.
- A. Volchek, Y. Zvonarev, G. Schanz, Advanced treatment of zircaloy cladding high-temperature oxidation in severe accident code calculations: PART II. Best-fitted parabolic correlations, Nucl. Eng. Des. 232 (1) (2004) 85-96. https://doi.org/10.1016/j.nucengdes.2004.02.014
- V.F. Urbanic, T.R. Heidrick, High-temperature oxidation of zircaloy-2 and zircaloy-4 in steam, J. Nucl. Mater. 75 (2) (1978) 251-261, 1978. https://doi.org/10.1016/0022-3115(78)90006-5
- J.T. Prater, E.L. Courtright, Oxidation of zircaloy-4 in steam at 1300 to 2400℃. Zirconium in the Nuclear Industry, ASTM International, 1987.
- E. Beuzet, J.-S. Lamy, A. Bretault, et al., Modelling of Zry-4 cladding oxidation by air, under severe accident conditions using the MAAP4 code, Nucl. Eng. Des. 241 (4) (2009) 1217-1224. https://doi.org/10.1016/j.nucengdes.2010.04.024
- C. Bals, E. Beuzet, J. Birchley, et al., Modelling of Accelerated Cladding Degradation in Air for Severe Accident Codes, 2008.
- L. Fernandez-Moguel, J. Birchley, Analysis of QUENCH-10 and -16 air ingress experiments with SCDAPSim3.5, Ann. Nucl. Energy 53 (2013) 202-212. https://doi.org/10.1016/j.anucene.2012.08.030