DOI QR코드

DOI QR Code

Explore the possible advantages of using thorium-based fuel in a pressurized water reactor (PWR) Part 1: Neutronic analysis

  • Galahom, A. Abdelghafar (Higher Technological Institute) ;
  • Mohsen, Mohamed Y.M. (Nuclear Engineering Department, Military Technical College) ;
  • Amrani, Naima (Physics Department, Faculty of Sciences, Ferhat ABBAS, Setif-1, University)
  • Received : 2021.05.12
  • Accepted : 2021.07.16
  • Published : 2022.01.25

Abstract

This study discusses the effect of using 232Th instead of 238U on the neutronic characteristics and the main operating parameters of the pressurized water reactor (PWR). MCNPX version 2.7 was used to compare the neutronic characteristics of UO2 with (Th, 235U)O2 and (Th, 233U) O2. Firstly, the infinity multiplication factor (Kinf), thermal neutron flux, and power distribution have been studied for the investigated fuel types. Secondly, the effect of Gd2O3 and Er2O3 on the Kinf and on the radial thermal neutron flux and thermal power has been investigated to distinguish which of them is more suitable than the other in reactivity management. Thirdly, to illustrate the effectiveness of 232Th in decreasing the inventory of both the actinides and non-actinides, the concentration of plutonium (Pu) isotopes and minor actinides (MAs) has been simulated with the fuel burnup. Besides, due to their large thermal neutron absorption cross-section, the concentrations of 135Xe, 149Sm, and 151Sm with the fuel burnup have been investigated. Finally, the main safety parameters such as the reactivity worth of the control rods (ρCR), the effective delayed neutron fraction βeff, and the Doppler reactivity coefficient (DRC) were calculated to determine to which extent these fuel types achieve the acceptable limits.

Keywords

References

  1. S. Mittag, S. Kliem, Burning plutonium and minimizing radioactive waste in existing PWRs, Ann. Nucl. Energy 38 (2011) 98-102. https://doi.org/10.1016/j.anucene.2010.08.012
  2. IAEA (International Atomic Energy Agency), Thorium-based Fuel Options for Generation of Electricity Developments in the 1990s. IAEA-TECDOC-1155, 2000.
  3. IAEA (International Atomic Energy Agency), Thorium Fuel Utilization Options and Trends. IAEATECDOC-1319, 2002.
  4. IAEA (International Atomic Energy Agency), Potential of Thorium-Based Fuel Cycles to Constrain Plutonium and Reduce Long-Lived Waste toxicity.IAEA-TECDOC-1349, 2003.
  5. IAEA (International Atomic Energy Agency), Thorium Fuel Cycle-Potential Benefits and challenges.IAEA-TECDOC-1350, 2005.
  6. J. Zakova, J. Wallenius, Multirecycling of Pu, Am, and Cm in BWR, Ann. Nucl. Energy 58 (2013) 255-267. https://doi.org/10.1016/j.anucene.2013.03.024
  7. H.R. Trellue, C.G. Bathke, P. Sadasivan, Neutronics and material attractiveness for PWR thorium systems using Monte Carlo techniques, Prog. Nucl. Energy 53 (2011) 698-707. https://doi.org/10.1016/j.pnucene.2011.04.007
  8. S.M. Mirvakili, M.A. Kavafshary, A.J. Vaziri, Comparison of neutronic behavior of UO2, (Th, 233U)O2 and (Th, 233U)O2 fuels in a typical heavy water reactor, Nuclear Engineering and Technology 147 (2015) 315-322.
  9. S. Liu, J. Cai, Neutronic and thermohydraulic characteristics of a new breeding thoriumeuranium mixed SCWR fuel assembly, Ann. Nucl. Energy 62 (2013) 429-436. https://doi.org/10.1016/j.anucene.2013.07.004
  10. P.S. Ghosh, N. Kuganathan, C.O.T. Galvin, A. Arya, G.K. Dey, B.K. Dutta, R.W. Grimes, Melting behavior of (Th,U)O2 and (Th,Pu)O2 mixed oxides, J. Nucl. Mater. 479 (2016) 112-122. https://doi.org/10.1016/j.jnucmat.2016.06.037
  11. A. Ibrahim, M. Aziz, S.U. EL-Kameesy, S.A. EL-Fiki, A.A. Galahom, Analysis of thorium fuel feasibility in large scale gas-cooled fast reactor using MCNPX code, Ann. Nucl. Energy 111 (2018) 460-467. https://doi.org/10.1016/j.anucene.2017.07.029
  12. S. Permana, Basic design analysis of a heavy water-cooled thorium breeder reactor, Nucl. Eng. Des. 364 (2020) 110689. https://doi.org/10.1016/j.nucengdes.2020.110689
  13. P.E. MacDonald, Advanced Proliferation Resistant, Lower Cost, Uranium-Thorium Dioxide Fuels for Light Water Reactors. INEEL/EXT-02-01411, 2002.
  14. V.F. Castro, C.E. Velasquez, C. Pereira, Criticality and depletion analysis of reprocessed fuel spiked with thorium in a PWR core, Nucl. Eng. Des. 360 (2020) 110514. https://doi.org/10.1016/j.nucengdes.2020.110514
  15. D. Baldova, E. Fridman, E. Shwageraus, High conversion Th-U233 fuel for current generation of PWRs: Part I - assembly level analysis, Ann. Nucl. Energy 73 (2014) 552-559. https://doi.org/10.1016/j.anucene.2014.05.017
  16. J.R. Maiorino, G.L. Stefani, J.M.L. Moreira, P.C.R. Rossi, T.A. Santos, Feasibility to convert an advanced PWR from UO2 to a mixed U/ThO2 core - Part I: parametric studies, Ann. Nucl. Energy 102 (2017) 47-55. https://doi.org/10.1016/j.anucene.2016.12.010
  17. H. Tsige-Tamirat, Neutronics assessment of the use of thorium fuels in current pressurized water reactors, Prog. Nucl. Energy 53 (2011) 717-721. https://doi.org/10.1016/j.pnucene.2011.04.005
  18. A.N. Dominguez, S. Liu, T. Beuthe, B.P. Bromley, A.V. Colton, Steady state subchannel thermal-hydraulics assessment of advanced uranium and thoriumbased fuel bundle concepts for potential use in pressure tube heavy water reactors, Nucl. Technol. (2020), https://doi.org/10.1080/00295450.2020.1813463. CW-111420-CONF-017.
  19. E. Fridman, S. Kliem, Pu recycling in a full Th-MOX PWR core. Part I: steady-state analysis, Nucl. Eng. Des. 241 (2011) 193-202. https://doi.org/10.1016/j.nucengdes.2010.10.036
  20. K.I. Bjork, Thorium-plutonium fuel for long operatingcycles in PWR's - preliminary calculations, in: Paper Presented the Thorium and Rare Earths Conference, The Southern African Institute of Mining and Metallurgy, 2012.
  21. J.S. Herring, P.E. Macdonald, K.D. Weaver, C. Kullberg, Low cost, proliferation-resistant, uranium-thorium dioxide fuels for light water reactors, Nucl. Eng. Des. 203 (2001) 65-85. https://doi.org/10.1016/S0029-5493(00)00297-1
  22. K.D. Weaver, J.S. Herring, Performance of thorium-based mixed oxide fuels for the consumption of plutonium in current and advanced reactors, in: International Congress on Advanced Nuclear Power Plants (ICAPP), ANS Annual Meeting, 2002.
  23. J.N. Wilson, A. Bidaud, N. Capellan, R. Chambon, S. David, P. Guillemin, E. Ivanov, A. Nuttin, O. Meplan, Economy of uraniumresources in a three-component reactor fleetwith mixed thorium/uranium fuel cycles, Ann. Nucl. Energy 36 (2009) 404-408. https://doi.org/10.1016/j.anucene.2008.11.037
  24. K.I. Bjork, V. Fhager, C. Demaziere, Comparison of thorium-based fuels with different fissile components in existing boiling water reactors, Prog. Nucl. Energy 53 (2011) 618-625. https://doi.org/10.1016/j.pnucene.2010.03.004
  25. G. Olson, R. Cardell, D. Illum, Fuel Summary Report: Shippingport Light Water Breeder Reactor, INEEL/EXT-98-00799- Rev. 2, 2002.
  26. H. Tran, V. Hoang, P.H. Liem, H.T.P. Hoang, Neutronics design of VVER-1000 fuel assembly with burnable poison particles, Nuclear Engineering and Technology 51 (2019) 1729-1737. https://doi.org/10.1016/j.net.2019.05.026
  27. A.A. Galahom, Investigation of different burnable absorbers effectson the Neutronic characteristics of PWR assembly, Ann. Nucl. Energy 94 (2016a) 22-31. https://doi.org/10.1016/j.anucene.2016.02.025
  28. M. Lovecky, J. Zavorka, J. Jirickova, R. Skoda, Increasing efficiency of nuclear fuel using burnable absorbers, Prog. Nucl. Energy 118 (2020a) 103077. https://doi.org/10.1016/j.pnucene.2019.103077
  29. A.A. Galahom, Simulate the effect of integral burnable absorber on the neutronic characteristics of a PWR assembly, Journal of Nuclear energy and technology 4 (2018b) 287-293. https://doi.org/10.3897/nucet.4.30379
  30. J.S. Hendricks, M.W. Johnson, LA-UR-08-1808. MCNPX 26F Extensions, Los Alamos National Lab, 2008b.
  31. G. McKinney, MCNPX User's Manual, Version 2.7.0, 2011.
  32. D.B. Pelowitz, MCNPXTM User's Manual Version 2.7.0. LA-CP-11-00438, 2011.
  33. M. Oettingen, J. Cetnar, Validation of gadolinium burnout using PWRbenchmark specification, Nucl. Eng. Des. 273 (2014) 359-366. https://doi.org/10.1016/j.nucengdes.2014.03.048
  34. A.L. Nichols, D.L. Aldama, M. Verpelli, Hand Book of Nuclear Data for Safeguards: DataBase Extensions, August. INDC International Nuclear Data Committee, International Atomic Energy Agency. INDC(NDS)-0534, 2008.
  35. Y. Shirasu, K. Minato, Selection of chemical forms of iodine for transmutation of 129I, J. Nucl. Mater. 320 (2003) 25-30. https://doi.org/10.1016/S0022-3115(03)00164-8
  36. C. Ingelbrecht, J. Lupo, K. Raptis, T. Altzitzoglou, G. Noguere, 129I targets for studies of nuclear waste transmutation, Nucl. Instrum. Methods Phys. Res. 480 (2002) 204-208. https://doi.org/10.1016/S0168-9002(01)02092-7
  37. X. Ledoux, D. Dore, M. Mosconi, R. Nolte, S. Roettger, S. Varet, Delayed neutron measurements of 232Th neutron-induced fission, Ann. Nucl. Energy 76 (2015) 514-520. https://doi.org/10.1016/j.anucene.2014.10.012