References
- S. Mittag, S. Kliem, Burning plutonium and minimizing radioactive waste in existing PWRs, Ann. Nucl. Energy 38 (2011) 98-102. https://doi.org/10.1016/j.anucene.2010.08.012
- IAEA (International Atomic Energy Agency), Thorium-based Fuel Options for Generation of Electricity Developments in the 1990s. IAEA-TECDOC-1155, 2000.
- IAEA (International Atomic Energy Agency), Thorium Fuel Utilization Options and Trends. IAEATECDOC-1319, 2002.
- IAEA (International Atomic Energy Agency), Potential of Thorium-Based Fuel Cycles to Constrain Plutonium and Reduce Long-Lived Waste toxicity.IAEA-TECDOC-1349, 2003.
- IAEA (International Atomic Energy Agency), Thorium Fuel Cycle-Potential Benefits and challenges.IAEA-TECDOC-1350, 2005.
- J. Zakova, J. Wallenius, Multirecycling of Pu, Am, and Cm in BWR, Ann. Nucl. Energy 58 (2013) 255-267. https://doi.org/10.1016/j.anucene.2013.03.024
- H.R. Trellue, C.G. Bathke, P. Sadasivan, Neutronics and material attractiveness for PWR thorium systems using Monte Carlo techniques, Prog. Nucl. Energy 53 (2011) 698-707. https://doi.org/10.1016/j.pnucene.2011.04.007
- S.M. Mirvakili, M.A. Kavafshary, A.J. Vaziri, Comparison of neutronic behavior of UO2, (Th, 233U)O2 and (Th, 233U)O2 fuels in a typical heavy water reactor, Nuclear Engineering and Technology 147 (2015) 315-322.
- S. Liu, J. Cai, Neutronic and thermohydraulic characteristics of a new breeding thoriumeuranium mixed SCWR fuel assembly, Ann. Nucl. Energy 62 (2013) 429-436. https://doi.org/10.1016/j.anucene.2013.07.004
- P.S. Ghosh, N. Kuganathan, C.O.T. Galvin, A. Arya, G.K. Dey, B.K. Dutta, R.W. Grimes, Melting behavior of (Th,U)O2 and (Th,Pu)O2 mixed oxides, J. Nucl. Mater. 479 (2016) 112-122. https://doi.org/10.1016/j.jnucmat.2016.06.037
- A. Ibrahim, M. Aziz, S.U. EL-Kameesy, S.A. EL-Fiki, A.A. Galahom, Analysis of thorium fuel feasibility in large scale gas-cooled fast reactor using MCNPX code, Ann. Nucl. Energy 111 (2018) 460-467. https://doi.org/10.1016/j.anucene.2017.07.029
- S. Permana, Basic design analysis of a heavy water-cooled thorium breeder reactor, Nucl. Eng. Des. 364 (2020) 110689. https://doi.org/10.1016/j.nucengdes.2020.110689
- P.E. MacDonald, Advanced Proliferation Resistant, Lower Cost, Uranium-Thorium Dioxide Fuels for Light Water Reactors. INEEL/EXT-02-01411, 2002.
- V.F. Castro, C.E. Velasquez, C. Pereira, Criticality and depletion analysis of reprocessed fuel spiked with thorium in a PWR core, Nucl. Eng. Des. 360 (2020) 110514. https://doi.org/10.1016/j.nucengdes.2020.110514
- D. Baldova, E. Fridman, E. Shwageraus, High conversion Th-U233 fuel for current generation of PWRs: Part I - assembly level analysis, Ann. Nucl. Energy 73 (2014) 552-559. https://doi.org/10.1016/j.anucene.2014.05.017
- J.R. Maiorino, G.L. Stefani, J.M.L. Moreira, P.C.R. Rossi, T.A. Santos, Feasibility to convert an advanced PWR from UO2 to a mixed U/ThO2 core - Part I: parametric studies, Ann. Nucl. Energy 102 (2017) 47-55. https://doi.org/10.1016/j.anucene.2016.12.010
- H. Tsige-Tamirat, Neutronics assessment of the use of thorium fuels in current pressurized water reactors, Prog. Nucl. Energy 53 (2011) 717-721. https://doi.org/10.1016/j.pnucene.2011.04.005
- A.N. Dominguez, S. Liu, T. Beuthe, B.P. Bromley, A.V. Colton, Steady state subchannel thermal-hydraulics assessment of advanced uranium and thoriumbased fuel bundle concepts for potential use in pressure tube heavy water reactors, Nucl. Technol. (2020), https://doi.org/10.1080/00295450.2020.1813463. CW-111420-CONF-017.
- E. Fridman, S. Kliem, Pu recycling in a full Th-MOX PWR core. Part I: steady-state analysis, Nucl. Eng. Des. 241 (2011) 193-202. https://doi.org/10.1016/j.nucengdes.2010.10.036
- K.I. Bjork, Thorium-plutonium fuel for long operatingcycles in PWR's - preliminary calculations, in: Paper Presented the Thorium and Rare Earths Conference, The Southern African Institute of Mining and Metallurgy, 2012.
- J.S. Herring, P.E. Macdonald, K.D. Weaver, C. Kullberg, Low cost, proliferation-resistant, uranium-thorium dioxide fuels for light water reactors, Nucl. Eng. Des. 203 (2001) 65-85. https://doi.org/10.1016/S0029-5493(00)00297-1
- K.D. Weaver, J.S. Herring, Performance of thorium-based mixed oxide fuels for the consumption of plutonium in current and advanced reactors, in: International Congress on Advanced Nuclear Power Plants (ICAPP), ANS Annual Meeting, 2002.
- J.N. Wilson, A. Bidaud, N. Capellan, R. Chambon, S. David, P. Guillemin, E. Ivanov, A. Nuttin, O. Meplan, Economy of uraniumresources in a three-component reactor fleetwith mixed thorium/uranium fuel cycles, Ann. Nucl. Energy 36 (2009) 404-408. https://doi.org/10.1016/j.anucene.2008.11.037
- K.I. Bjork, V. Fhager, C. Demaziere, Comparison of thorium-based fuels with different fissile components in existing boiling water reactors, Prog. Nucl. Energy 53 (2011) 618-625. https://doi.org/10.1016/j.pnucene.2010.03.004
- G. Olson, R. Cardell, D. Illum, Fuel Summary Report: Shippingport Light Water Breeder Reactor, INEEL/EXT-98-00799- Rev. 2, 2002.
- H. Tran, V. Hoang, P.H. Liem, H.T.P. Hoang, Neutronics design of VVER-1000 fuel assembly with burnable poison particles, Nuclear Engineering and Technology 51 (2019) 1729-1737. https://doi.org/10.1016/j.net.2019.05.026
- A.A. Galahom, Investigation of different burnable absorbers effectson the Neutronic characteristics of PWR assembly, Ann. Nucl. Energy 94 (2016a) 22-31. https://doi.org/10.1016/j.anucene.2016.02.025
- M. Lovecky, J. Zavorka, J. Jirickova, R. Skoda, Increasing efficiency of nuclear fuel using burnable absorbers, Prog. Nucl. Energy 118 (2020a) 103077. https://doi.org/10.1016/j.pnucene.2019.103077
- A.A. Galahom, Simulate the effect of integral burnable absorber on the neutronic characteristics of a PWR assembly, Journal of Nuclear energy and technology 4 (2018b) 287-293. https://doi.org/10.3897/nucet.4.30379
- J.S. Hendricks, M.W. Johnson, LA-UR-08-1808. MCNPX 26F Extensions, Los Alamos National Lab, 2008b.
- G. McKinney, MCNPX User's Manual, Version 2.7.0, 2011.
- D.B. Pelowitz, MCNPXTM User's Manual Version 2.7.0. LA-CP-11-00438, 2011.
- M. Oettingen, J. Cetnar, Validation of gadolinium burnout using PWRbenchmark specification, Nucl. Eng. Des. 273 (2014) 359-366. https://doi.org/10.1016/j.nucengdes.2014.03.048
- A.L. Nichols, D.L. Aldama, M. Verpelli, Hand Book of Nuclear Data for Safeguards: DataBase Extensions, August. INDC International Nuclear Data Committee, International Atomic Energy Agency. INDC(NDS)-0534, 2008.
- Y. Shirasu, K. Minato, Selection of chemical forms of iodine for transmutation of 129I, J. Nucl. Mater. 320 (2003) 25-30. https://doi.org/10.1016/S0022-3115(03)00164-8
- C. Ingelbrecht, J. Lupo, K. Raptis, T. Altzitzoglou, G. Noguere, 129I targets for studies of nuclear waste transmutation, Nucl. Instrum. Methods Phys. Res. 480 (2002) 204-208. https://doi.org/10.1016/S0168-9002(01)02092-7
- X. Ledoux, D. Dore, M. Mosconi, R. Nolte, S. Roettger, S. Varet, Delayed neutron measurements of 232Th neutron-induced fission, Ann. Nucl. Energy 76 (2015) 514-520. https://doi.org/10.1016/j.anucene.2014.10.012