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Ⅰ. Introduction

A parallel-plate capacitor is a device which 
stores electrical charge, widely applied in 
various electronic devices. Besides being 
applied in electronics such as computer 
keyboards or electrostatic microphones, 
parallel-plate capacitors are also used to 
measure the relative permittivity (dielectric 
constant) of materials (Grove, Masters, & Miers 
2005; Radivojević, Rupčić, Srnović, & Benšić, 
2018). Therefore, it is important that students 
understand how charges are stored and how 
electric fields form in these capacitors. When 
two parallel conducting plates of equal area  
and separated by a distance d carry equal 
charges  of opposite sign, an electric field 
(pointing toward the negative plate) is created 
and the plates experience a potential difference 

. Assuming that the conductor plates are 
infinitely wide,(Halliday, Resnick, & Walker, 
2014; Knight, 2017) the electric field strength  
is expressed as:   

where  is the charge density per unit 
area and  is the vacuum permittivity. Since 

 is constant between two infinite, parallel 
conducting plates, the potential difference  
between the plates is given by:

Therefore, the capacitance  of the 
parallel-plate capacitor can be expressed as:

   
These are well-known formulas describing an 

ideal parallel-plate capacitor.
In this paper, we evaluate the methods used 

to obtain Eq. (1) in general physics textbooks 
used in the college and propose a more 
appropriate derivation process. Based on six 
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general physics textbooks (Halliday, Resnick, & 
Walker, 2014; Knight, 2017; Serway & Vuille, 
2017; Tipler & Moska, 2004, 2008; Wolfson & 
Pasachoff, 2017) and questions argued in 
physics forums, (Gerard, 2014; Pricklebush, 
2013) we analyzed the issues related to the 
electric field between the electrode plates of 
parallel-plate capacitors found in each 
textbook, and developed a correct theoretical 
approach to solve these by applying the 
Gauss’s law to calculate these electric fields.

As covered in most college textbooks, Gauss’s 
law can be used to derivate the formulas for 
the electric field near a thin infinite charged 
plate and near the surface of a conductor as:

and

respectively, where  denotes a uniform 
positive surface charge density. Some general 
physics textbooks (Knight, 2017; Serway & 
Vuille, 2017) explain the electric field inside a 
parallel-plate capacitor as the superposition of 
the electric fields generated by two thin 
charged plates - one positively and the other 
negatively charged - which are infinitely large 
and of negligible thickness. In other words, 
since the opposite charges on the plates are 
attracted to each other, the charges are 
distributed only on the inner surfaces, resulting 
in two infinite plane charges with opposite sign. 
Hence, the superposition of these electric fields 
results in twice the electric field strength of Eq. 
(4) inside the capacitor, and no electric field 
outside the capacitor. Similar to the textbooks, 
(Knight, 2017; Serway & Vuille, 2017) in the 5th 
edition of the textbook (Tipler & Moska, 2004), 
Eq. (5) was described as the superposition of 
the electric fields generated by each plate. 

However, in the 6th edition (Tipler & Moska, 
2008), it was explained by discontinuities in the 
electric field. That is, because the opposite 
charges on the two adjacent conducting plates 
are attracted to each other, therefore, the 
electric charges distribute uniformly on the 
inner surface of the plates. Because the electric 
field inside the conductor becomes zero at 
electrostatic equilibrium and; the electric field 
at the boundary of the surface charge is 
discontinuous by , the electric field between 
capacitors is described by Eq. (5).

On the other hand, in one textbook (Wolfson 
& Pasachoff, 2017) the electric field expressed 
by Eq. (5) is obtained using Gauss's law. But a 
parallel-plate capacitor is composed of a pair 
of conducting plates which carry opposite 
charge and, consequently, the author wonders 
that the electric field between the capacitors 
will be twice that of Eq. (5) if Gauss's law is 
applied for both conductor plates. Furthermore, 
the parallel-plate capacitor is not isolated and, 
therefore, the symmetry of the charge 
distribution is broken and the charge 
accumulates only on the inner surfaces of the 
two plates. Hence, one can consider the two 
conducting plates as two plane charge 
distributions, and the electric field inside the 
capacitor becomes twice as large as that of Eq. 
(4), while the electric field outside the capacitor 
is zero, due to the superposition of the electric 
field. The electric field inside the parallel-plate 
capacitor was also calculated by applying the 
Gauss’s law to only one conducting plate, and 
not as a superposition of electric fields 
generated by the two thin charge plates 
(Halliday, Resnick, & Walker, 2014). Although 
these methods lead to the same result, this 
brings on the possibility that the electric field 
inside the capacitor may be twice that of Eq. 
(5) when superposing the electric field 
generated by each plate, if we apply Gauss’s 
law to both plates. In this textbook (Halliday, 
Resnick, & Walker, 2014), the electric field 
between two equally but opposite 
charged-conducting plates was also discussed, 
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based on the attraction of excess charges  
and a chage redistribution . But, in this 
textbook, we never find out the mathematical 
proof for  in a new electrostatic 
equilibrium.  Most of these textbooks refer to a 
fringing electric field that occurs due to edge 
effects near the edges of the plates, and a 
fringing electric field that is due to external 
charges on the electrode plate (Invchenko, 
2021). However, for parallel-plate capacitors 
with finite size plates and a small gap between 
the plates, they consider that the charge and 
electric field except in the vicinity of edges can 
be approximated by Eqs. (3) and (5). Analyzing 
the electric field calculations in the six 
textbooks considered, we found that the overall 
issue stems from the fact that the electric field 
inside the parallel-plate capacitor is derived 
using different charge distributions on the 
plates, making it difficult to find consistency. 
Students refer to several textbooks while 
studying and can get confused by different 
ways of explaining parallel-plate capacitors. To 
begin with, it is confusing that the electric field 
inside a parallel-plate capacitor (composed of 
two conductor plates) is calculated considering 
either the superposition of electric fields 

 near two thin infinite plates, or only 
the electric field  on the surface of one 
conductor. Moreover, there is no clear 
explanation of whether or not the Gauss's law 
should be applied to both the positive and 
negative electrode plates of the capacitor. If it 
is, we should obtain the electric field by 
superposition after setting two Gaussian 
surfaces, and the electric field is , that is 
what makes one question these approaches. To 
avoid doubting, most textbooks derive the 
electric field of the parallel-plate capacitor by 
the superposition of the electric field around 
the infinite plate charge expressed by Eq. (4).

The above question is also heavily discussed 
in the physics forum site (Gerard, 2014; 
Pricklebush, 2013) “Stack Exchange.” There, a 
search for “What is the electric field in a 
parallel capacitor?” and “Field between the 

plates of a parallel-plate capacitor using 
Gauss's Law” revealed that learners have a 
keen interest and many questions about how to 
use the electric field of a thin infinite plate and 
the electric field of a conductor surface to 
calculate the electric field inside the parallel 
plates (187,000 and 89,000 views, respectively).

A comprehensive analysis of the physics 
textbooks (Grove, Masters, & Miers 2005; 
Radivojević, Rupčić, Srnović, & Benšić, 2018; 
Serway & Vuille, 2017; Tipler & Moska, 2004, 
2008; Wolfson & Pasachoff, 2017) and the Stack 
Exchange forum (Gerard, 2014; Pricklebush, 
2013) indicated that the general problem of the 
parallel-plate capacitor is the avoidance of the 
following concepts. If two isolated conductors 
are brought close to each other, a new 
electrostatic equilibrium is achieved by the 
redistribution of the charges on each plate 
which produces electric fields. The initially 
asymmetrical charge distribution in an  
electrostatic equilibrium  is rearranged on each 
electrode plate due to the proximity of the 
charges of the other plate, and electric field 
lines form between the two electrode plates 
(pointing from the + plate to the – plate) in a 
new electrostatic equilibrium. Therefore, 
Gauss’s law should only be applied to either of 
the two electrode plates and the superposition 
of fields is not needed in this case.

The purpose of this study is to elucidate the 
formation mechanism of the electric field in the 
parellel plate capacior covered in college 
textbooks and  propose an  anaytical model to 
explain it in reasonable manner.

Ⅱ. Theoretical Calculations: 
A new analysis of two parallel 

conducting plates

To summarize, we can get some questions: is 
it reasonable to calculate the electric field 
inside a parallel-plate capacitor by the 
superposition the electric fields generated 
around two infinite charge plates? In other 
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words, is it preferable to obtain the electric 
field of the parallel-plate capacitor by applying 
the Gauss’s law to only one electrode plate, 
based on the concept of a newly formed 
electrostatic equilibrium of the two facing 
conductors? Aren’t there a more general 
mathematical approach to settle the problems 
for the charge  redistributions and electric 
fields formed by the proximity of two charged 
parallel conducting plates.

 These questions are the motivation for this 
research. Considering these aspects, in this 
study, we set around the two charged 
conducting plates nine Gaussian surfaces(Fig. 1) 
to calculate the electric field and the charge 
distribution inside and outside the plates. And 
we show that when two charged conductor 
plates with charge densities  and  are 
brought close to each other, the charge 
distribution rearranges. Concomitantly, we 
attempt to show that the electric field is 
determined by the rearranged electric charges. 
Further, we intend to answer the questions 
related to the electric field of the parallel-plate 
capacitor which have been controversial so far 
by calculating the electric field and the charge 
distribution for a parallel-plate capacitor in a 

special case, such as .
As shown in Fig. 1, the conducting plates are 

assumed ideal, very large, and located close to 
each other so that fringe effects can be 
neglected and electric field lines are 
perpendicular to the plane of the plates. When 
these plates, charged with  and  
(surface area ), are brought close, assuming 
that  and  on the inner and 
outer surfaces of both conductor plates are 
distributed by  and , and 

 and , respectively. they can 
be expressed as:

We apply the Gauss’s law by defining nine 
Gaussian surfaces as seen in Fig. 1, setting the 
normal to the plane (A) to point toward the 
outside of the capacitor. At the electrostatic 
equilibrium, the electric fields  and inside 
the conductor vanish with respect to the 
Gaussian surface (1), and the electric flux 
can be written as:

Figure 1. Gaussian surfaces used to find the electric field and charge distribution 
of two facing conductor plates with area S.

(6)

(7)
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from where:

   
Therefore, the charge sign is opposite on the 

inner side of the two conducting plates, which 
are charged with the same amount of charge.

Using the Gaussian surface (2),  becomes:

from where we deduce that:

The Gaussian surface (3) yields a  
described by:

from where:

In Eq. (9),  and  are equal and of 
opposite sign, so  of Eq. (11) and  of Eq. 
(13) are also equal and have the same direction 
(as indicated in Fig. 1).

Since the Gaussian surface (4) lies between 
the Gaussian surfaces (2) and (3),  is given 
by:

from where:

in accordance to the requirement of electric 
field continuity in the same medium. That is, 

 and  are equal and point in the same 
direction, and are described by:

   
due to the continuity of the electric field in 

the same medium with no free local charges. 
Combining the Eqs. (15) and (16), we obtain 

, same as Eq. (9).
Using the Gaussian surface (5),  is derived 

as follows:

and the resultant electric field is:

whose direction is left if  > 0 and  > 0.
Using the Gaussian surface (6) and Eqs. (9) 

and (16), if  > 0, than  < 0 and  > 0, 
and the flux is derived as:

Thus, we obtain:

In this case, the direction of  becomes the 
right direction.

The Gaussian surface (7) shown in Fig. 1 can 
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be regarded at infinity as a planar charge 
distribution as seen in Fig. 2. Therefore,  for 
the Gaussian surface (7) is given by: 

and, thus, the field at infinity becomes:

For the Gaussian surface (8),  is expressed 
as: 

and therefore

Similarly, for the Gaussian surface (9),  is 
expressed as: 

and, therefore, 

Using all Eqs. (7)~(26), we derive the 
relationships between charge densities as 
follows:  

and the relationship between electric fields 
as:

Eqs. (27) and (28) have a rather lengthy 
derivation procedure using nine Gaussian 
surfaces, but they are very important relations 
in elucidating quantitatively the charge 
distributions and the electric field formation in 
two conducting parallel-plate system. As can be 
seen in Eqs. (27) and (28), the amount of 
charge and the electric field strength inside 
and outside two conducting plates facing each 
other at close distance depend on the charge 
density on each plate when they are far apart. 
That is, even the electric field formed in the 
vicinity of each plate is determined by the 
charge density distributed on both plates. Thus, 
the two plates influence each other resulting in 
a new electrostatic equilibrium state, electric 
fields form inside and outside the plates due to 
the newly formed electric charge density in a 
new electrostatic equilibrium, and  and  
become equal like Eq. (28). Even if Eq. (28) 
shows that the field can be expressed by the 
superposition of electric fields from Eq. (4), 
since the charge distribution of the two plates 
arises from the concept of plates at 
electrostatic equilibrium affecting each other, a 
good analysis method should not introduce the 
concept of superposition. It is noted that Eqs. 
(27) and (28), that is,  the charge  
redistributions and electric fields formed by the 
proximity of two charged parallel conducting 

Figure 2. Electric charge distribution of two conducting plates seen from an infinite distance.
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plates can be derived using nine Gaussian 
surfaces.  

Thus, when two isolated charged conducting 
plates are brought close together, the electric 
fields generated by each electric charge 
redistribute the electric charge density achieved 
at electrostatic equilibrium by the isolated 
conductor plate, forming a new charge density 
with a corresponding electric field. Therefore, 
the charge redistribution and the electric field 
inside and outside two charged conducting 
plates having an arbitrary charge distribution 
may appear different, depending on the amount 
and polarity of the charge density of the two 
isolated conducting plates at electrostatic 
equilibrium.

On the other hand, since in a parallel-plate 
capacitor , using Eq. (27) we obtain:

Therefore, Eq. (28) becomes:

Eqs. (29) and (30) are well-known formulas 
describing the ideal parallel-plate capacitor. In 
Eqs. (29) and (30), factor 2 originates from the 
definition of  and , and 

 and . From Eq. (29), one 

can find easily, . i.e. 
, and . i.e. 
. This means that the charges 

accumulate only on inner surfaces of plates in 
parallel-plate capacitors. Similarly, from Eq. 
(30), it becomes that 

. Therefore, we can obtain 

where . Eq. (31) are equivalent to Eq. 
(1).

Thus, we found that the charge of the 

parallel-plate capacitor exists only on the inner 
surfaces of the conducting plates, and that the 
electric field occurs only between the plates 
and  and  due to  are equal in 
both strength and direction. Further, a new 
electrostatic equilibrium between the two 
conducting plates of the parallel-plate capacitor 
is achieved due to redistribution of charges 
between the plates, and the electric field lines 
start from  and end on 

. Therefore, when employing Gauss’s law to 
find the electric field inside the parallel-plate 
capacitor, the Gaussian surface must be 
applied to only one of the conducting plates. 
For the same reason, in a coaxial cylindrical 
capacitor, the electric field is obtained by 
setting the Gaussian surface only around the 
inner conducting cylindrical plate.  These are 
why Eqs. (27) and (28)  are crucial in 
elucidating the electric fields in the  
parallel-plate capacitors.  They are key 
equations to explain the charge distribution, a 
new electrostatic equilibrium, the application of 
Gauss’ law  in the  parallel- plate capacitors. 
In addition, Eqs. (27) and (28) are more 
generalized fomulas for the charge distributions 
and electric fields formed by two charged 
parallel conducting plates getting close 
together. It should be kept in mind that  Eqs. 
(27)~ (30) could be obtained in a bit long 
mathematical procedure using nine Gaussian 
surfaces. Nevertheless, they give more realistic 
and quantitative intuitions on the the charge 
distributions and electric fields  in two 
conducting plate system  without relying on the 
superposition of electric fields. 

Ⅲ. Application of Theoretical 
Calculations and Discussions

To apply the theoretical calculations of sec.2 
to realistic systems, let's examine the charge 
redistribution of two distant, charged 
conducting plates which were in an initially 
electrostatic equilibrium. They are brought 

(29)

(30)

(31)
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closer together and  achieve a new 
electrostatic equilibrium due to the electric 
fields formed by the charge redistribution. 
Further, let’s show the charge redistributions 
and the electric fields of the plates given by 
Eqs. (27) and (28) before and after reaching a 
new electrostatic equilibrium schematically, with 
the positive and negative charges denoted by + 
and -, and the charge density amount 
represented by the number of + and - symbols 
illustrated. The positive(+) charges are due to 
the transfer of negative(-) charges. 

Fig. 3 shows the charge redistribution of the 
two conducting plates before (a) and after (b) 
reaching a new  electrostatic equilibrium, for 

; in case (a), the + charges are 
distributed with the same density on the outer 
surfaces of the two conducting plates, and in 

case (b), the + and - charges are distributed 
with the same density on the inner surfaces of 
the conductor plates. In the latter case, the 
electric field is strong outside the capacitor 

( ) and weak inside ( ), pointing out to the 
change from a conducting plate with high 
initial charge density to one with small initial 
charge density.

Fig. 4 shows the charge redistribution of two 
conducting plates before (a) and after (b) 
reaching a new electrostatic equilibrium, for 

; the inner electric field is large, in 
this case, because plenty of the positive and 
negative charges are arranged with the same 
density on the inner surfaces ( ) of the 

plates. The outer electric field ( ) is weak, 
because few positive charges are distributed on 

Figure 3. Electric charge redistribution of two conducting plates for : 

before (a) and after (b) a new electrostatic equilibrium.

Figure 4. Electric charge redistribution of two conducting plates for : 

before (a) and after (b) a new electrostatic equilibrium.
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the outside surfaces of the two conducting 
plates. (Although not shown, in the case of 

 the sign of the charge density of 
the outer surfaces of the two plates is 
reversed, but the sign of the inner surface 
charges does not change.)

Fig. 5 shows the charge redistribution of two 
conducting plates before (a) and after (b) 
reaching a new electrostatic equilibrium for 

; the inner electric field ( ) starts 
from the + charges and ends at the negative 
charges, and the outer electric field vanishes 
because all the charges, either + or -, are 
distributed only inside the two conducting 
plates. These facts are well-known for ideal 
parallel-plate capacitors.

There are no ways to confirm the results, 
Eqs. (27)~(30) experimentally because the 
charges and electric fields between two 
conducting plates or in a parallel-plate 
capacitor with finite sizes cannot be measured 
without the fringing effects. Most of all, we 
have no tools to measure electric fields 
directly. Also, to measure the charges on the 
plates without the fringing effect, we need a 
parallel-plate capacitor with finite size plates 
and a small gap between the plates. But, in 
such case, we cannot insert a charge sensor 
into the between of conducting plate electrodes. 
Nevertheless, Eqs. (27)~(30) will be  useful 
formulas to settle the currently issued 

problems concerning the parallel-plate 
capacitor in the college textbooks and the 
physics forums.

Ⅳ. Conclusion

In conclusion, after analyzing the methods by 
which the electric field inside and outside 
parallel-plate capacitors are described using 
Gaussian law in college-level physics textbooks, 
we propose a different but more reasonable 
theoretical approach. Our approach consists of 
a method to calculate the  electric fields 
between two charged conducting parallel plates, 
as well as evaluate their electric charge density 
redistributions.

We achieve this goal by setting nine Gaussian 
surfaces for two closely facing conducting 
plates and getting Eqs. (27) and (28). When two 
isolated charged conducting plates are brought 
close together, the electric fields formed by 
each of the charge densities redistribute the 
electric charges, leading to a new electrostatic 
equilibrium state, resulting in  new charge 
distributions and electric fields. Also, from Eqs. 
(29) and (30), in the parallel-plate capacitor, 
the charge of both conducting plates are 
rearranged only on the inner surfaces, via 
inducing a new electrostatic equilibrium by the 
charges on each conductor plate and the 

Figure 5. Electric charge redistribution of two conducting plates for : 

before (a) and after (b) a new electrostatic equilibrium.
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electric field inside is formed by the rearranged 
charge density. As a result, the electric field 
lines start at the + electrode plate and end at 
the - electrode plate. Therefore, when 
calculating the electric field between the 
conducting plates via inducing a new 
electrostatic equilibrium, Gaussian surface 
should be applied to only one of the electrodes 
of parallel-plate capacitors. Thus, the derived 
Eqs. (27)~(30) will be expected to lead the 
students to not only elucidating the charge 
distribution on inner surfaces of plates but 
explaing ‘ why we apply Gauss’ law to only one 
of the plates’. Counting on the derived Eqs. 
(27)~(30), the undergradute students could 
understand easily the charge distributions and 
electric fields in two charged conducting 
parallel plate system such as parallel-plate 
capacitors without relying on the superposition 
of electric fields. 

The results of this study can provide the 
undergradute students with an analytical 
explanation for the formation mechanism of 
electric fields in  parallel-plate capacitors, but 
it is necessary to follow-up studies to utilize 
them in the field of the physics education. We 
hope that, in the near future, a study on the 
application of our results to the field of physics 
education will be conducted.  
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