DOI QR코드

DOI QR Code

Successful Implementation of an Artificial Intelligence-Based Computer-Aided Detection System for Chest Radiography in Daily Clinical Practice

  • Seungsoo Lee (Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine) ;
  • Hyun Joo Shin (Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine) ;
  • Sungwon Kim (Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine) ;
  • Eun-Kyung Kim (Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine)
  • Received : 2022.03.21
  • Accepted : 2022.05.19
  • Published : 2022.09.01

Abstract

Keywords

Acknowledgement

The authors would like to thank Jun Tae Kim for his dedicated help for researchers.

References

  1. Tandon YK, Bartholmai BJ, Koo CW. Putting artificial intelligence (AI) on the spot: machine learning evaluation of pulmonary nodules. J Thorac Dis 2020;12:6954-6965  https://doi.org/10.21037/jtd-2019-cptn-03
  2. Hwang EJ, Park CM. Clinical implementation of deep learning in thoracic radiology: potential applications and challenges. Korean J Radiol 2020;21:511-525  https://doi.org/10.3348/kjr.2019.0821
  3. Eisen LA, Berger JS, Hegde A, Schneider RF. Competency in chest radiography. A comparison of medical students, residents, and fellows. J Gen Intern Med 2006;21:460-465  https://doi.org/10.1111/j.1525-1497.2006.00427.x
  4. Hwang EJ, Goo JM, Yoon SH, Beck KS, Seo JB, Choi BW, et al. Use of artificial intelligence-based software as medical devices for chest radiography: a position paper from the Korean Society of Thoracic Radiology. Korean J Radiol 2021;22:1743-1748  https://doi.org/10.3348/kjr.2021.0544
  5. van Ginneken B, Hogeweg L, Prokop M. Computer-aided diagnosis in chest radiography: beyond nodules. Eur J Radiol 2009;72:226-230  https://doi.org/10.1016/j.ejrad.2009.05.061
  6. Edwards M, Lawson Z, Morris S, Evans A, Harrison S, Isaac R, et al. The presence of radiological features on chest radiographs: how well do clinicians agree? Clin Radiol 2012;67:664-668  https://doi.org/10.1016/j.crad.2011.12.003
  7. Mehrotra P, Bosemani V, Cox J. Do radiologists still need to report chest x rays? Postgrad Med J 2009;85:339-341  https://doi.org/10.1136/pgmj.2007.066712
  8. Scheetz J, Rothschild P, McGuinness M, Hadoux X, Soyer HP, Janda M, et al. A survey of clinicians on the use of artificial intelligence in ophthalmology, dermatology, radiology and radiation oncology. Sci Rep 2021;11:5193 
  9. Coppola F, Faggioni L, Regge D, Giovagnoni A, Golfieri R, Bibbolino C, et al. Artificial intelligence: radiologists' expectations and opinions gleaned from a nationwide online survey. Radiol Med 2021;126:63-71  https://doi.org/10.1007/s11547-020-01205-y
  10. Kulkarni S, Seneviratne N, Baig MS, Khan AHA. Artificial intelligence in medicine: where are we now? Acad Radiol 2020;27:62-70  https://doi.org/10.1016/j.acra.2019.10.001
  11. Chassagnon G, Vakalopoulou M, Paragios N, Revel MP. Artificial intelligence applications for thoracic imaging. Eur J Radiol 2020;123:108774 
  12. van Leeuwen KG, Schalekamp S, Rutten MJCM, van Ginneken B, de Rooij M. Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur Radiol 2021;31:3797-3804  https://doi.org/10.1007/s00330-021-07892-z
  13. Jin KN, Kim EY, Kim YJ, Lee GP, Kim H, Oh S, et al. Diagnostic effect of artificial intelligence solution for referable thoracic abnormalities on chest radiography: a multicenter respiratory outpatient diagnostic cohort study. Eur Radiol 2022;32:3469-3479  https://doi.org/10.1007/s00330-021-08397-5
  14. Hwang EJ, Kim H, Yoon SH, Goo JM, Park CM. Implementation of a deep learning-based computer-aided detection system for the interpretation of chest radiographs in patients suspected for COVID-19. Korean J Radiol 2020;21:1150-1160  https://doi.org/10.3348/kjr.2020.0536
  15. van Leeuwen KG, de Rooij M, Schalekamp S, van Ginneken B, Rutten MJCM. How does artificial intelligence in radiology improve efficiency and health outcomes? Pediatr Radiol 2021 Jun [Epub]. https://doi.org/10.1007/s00247-021-05114-8 
  16. Kim SJ, Roh JW, Kim S, Park JY, Choi D. Current state and strategy for establishing a digitally innovative hospital: memorial review article for opening of Yongin Severance Hospital. Yonsei Med J 2020;61:647-651  https://doi.org/10.3349/ymj.2020.61.8.647
  17. Lee JH, Sun HY, Park S, Kim H, Hwang EJ, Goo JM, et al. Performance of a deep learning algorithm compared with radiologic interpretation for lung cancer detection on chest radiographs in a health screening population. Radiology 2020;297:687-696  https://doi.org/10.1148/radiol.2020201240
  18. Sim Y, Chung MJ, Kotter E, Yune S, Kim M, Do S, et al. Deep convolutional neural network-based software improves radiologist detection of malignant lung nodules on chest radiographs. Radiology 2020;294:199-209  https://doi.org/10.1148/radiol.2019182465
  19. Hwang EJ, Park S, Jin KN, Kim JI, Choi SY, Lee JH, et al. Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open 2019;2:e191095 
  20. Calli E, Sogancioglu E, van Ginneken B, van Leeuwen KG, Murphy K. Deep learning for chest X-ray analysis: a survey. Med Image Anal 2021;72:102125 
  21. Nam JG, Kim M, Park J, Hwang EJ, Lee JH, Hong JH, et al. Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs. Eur Respir J 2021;57:2003061 
  22. van Ginneken B, Schaefer-Prokop CM, Prokop M. Computer-aided diagnosis: how to move from the laboratory to the clinic. Radiology 2011;261:719-732  https://doi.org/10.1148/radiol.11091710
  23. Fazal MI, Patel ME, Tye J, Gupta Y. The past, present and future role of artificial intelligence in imaging. Eur J Radiol 2018;105:246-250 https://doi.org/10.1016/j.ejrad.2018.06.020