Acknowledgement
The authors would like to thank Jun Tae Kim for his dedicated help for researchers.
References
- Tandon YK, Bartholmai BJ, Koo CW. Putting artificial intelligence (AI) on the spot: machine learning evaluation of pulmonary nodules. J Thorac Dis 2020;12:6954-6965 https://doi.org/10.21037/jtd-2019-cptn-03
- Hwang EJ, Park CM. Clinical implementation of deep learning in thoracic radiology: potential applications and challenges. Korean J Radiol 2020;21:511-525 https://doi.org/10.3348/kjr.2019.0821
- Eisen LA, Berger JS, Hegde A, Schneider RF. Competency in chest radiography. A comparison of medical students, residents, and fellows. J Gen Intern Med 2006;21:460-465 https://doi.org/10.1111/j.1525-1497.2006.00427.x
- Hwang EJ, Goo JM, Yoon SH, Beck KS, Seo JB, Choi BW, et al. Use of artificial intelligence-based software as medical devices for chest radiography: a position paper from the Korean Society of Thoracic Radiology. Korean J Radiol 2021;22:1743-1748 https://doi.org/10.3348/kjr.2021.0544
- van Ginneken B, Hogeweg L, Prokop M. Computer-aided diagnosis in chest radiography: beyond nodules. Eur J Radiol 2009;72:226-230 https://doi.org/10.1016/j.ejrad.2009.05.061
- Edwards M, Lawson Z, Morris S, Evans A, Harrison S, Isaac R, et al. The presence of radiological features on chest radiographs: how well do clinicians agree? Clin Radiol 2012;67:664-668 https://doi.org/10.1016/j.crad.2011.12.003
- Mehrotra P, Bosemani V, Cox J. Do radiologists still need to report chest x rays? Postgrad Med J 2009;85:339-341 https://doi.org/10.1136/pgmj.2007.066712
- Scheetz J, Rothschild P, McGuinness M, Hadoux X, Soyer HP, Janda M, et al. A survey of clinicians on the use of artificial intelligence in ophthalmology, dermatology, radiology and radiation oncology. Sci Rep 2021;11:5193
- Coppola F, Faggioni L, Regge D, Giovagnoni A, Golfieri R, Bibbolino C, et al. Artificial intelligence: radiologists' expectations and opinions gleaned from a nationwide online survey. Radiol Med 2021;126:63-71 https://doi.org/10.1007/s11547-020-01205-y
- Kulkarni S, Seneviratne N, Baig MS, Khan AHA. Artificial intelligence in medicine: where are we now? Acad Radiol 2020;27:62-70 https://doi.org/10.1016/j.acra.2019.10.001
- Chassagnon G, Vakalopoulou M, Paragios N, Revel MP. Artificial intelligence applications for thoracic imaging. Eur J Radiol 2020;123:108774
- van Leeuwen KG, Schalekamp S, Rutten MJCM, van Ginneken B, de Rooij M. Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur Radiol 2021;31:3797-3804 https://doi.org/10.1007/s00330-021-07892-z
- Jin KN, Kim EY, Kim YJ, Lee GP, Kim H, Oh S, et al. Diagnostic effect of artificial intelligence solution for referable thoracic abnormalities on chest radiography: a multicenter respiratory outpatient diagnostic cohort study. Eur Radiol 2022;32:3469-3479 https://doi.org/10.1007/s00330-021-08397-5
- Hwang EJ, Kim H, Yoon SH, Goo JM, Park CM. Implementation of a deep learning-based computer-aided detection system for the interpretation of chest radiographs in patients suspected for COVID-19. Korean J Radiol 2020;21:1150-1160 https://doi.org/10.3348/kjr.2020.0536
- van Leeuwen KG, de Rooij M, Schalekamp S, van Ginneken B, Rutten MJCM. How does artificial intelligence in radiology improve efficiency and health outcomes? Pediatr Radiol 2021 Jun [Epub]. https://doi.org/10.1007/s00247-021-05114-8
- Kim SJ, Roh JW, Kim S, Park JY, Choi D. Current state and strategy for establishing a digitally innovative hospital: memorial review article for opening of Yongin Severance Hospital. Yonsei Med J 2020;61:647-651 https://doi.org/10.3349/ymj.2020.61.8.647
- Lee JH, Sun HY, Park S, Kim H, Hwang EJ, Goo JM, et al. Performance of a deep learning algorithm compared with radiologic interpretation for lung cancer detection on chest radiographs in a health screening population. Radiology 2020;297:687-696 https://doi.org/10.1148/radiol.2020201240
- Sim Y, Chung MJ, Kotter E, Yune S, Kim M, Do S, et al. Deep convolutional neural network-based software improves radiologist detection of malignant lung nodules on chest radiographs. Radiology 2020;294:199-209 https://doi.org/10.1148/radiol.2019182465
- Hwang EJ, Park S, Jin KN, Kim JI, Choi SY, Lee JH, et al. Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open 2019;2:e191095
- Calli E, Sogancioglu E, van Ginneken B, van Leeuwen KG, Murphy K. Deep learning for chest X-ray analysis: a survey. Med Image Anal 2021;72:102125
- Nam JG, Kim M, Park J, Hwang EJ, Lee JH, Hong JH, et al. Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs. Eur Respir J 2021;57:2003061
- van Ginneken B, Schaefer-Prokop CM, Prokop M. Computer-aided diagnosis: how to move from the laboratory to the clinic. Radiology 2011;261:719-732 https://doi.org/10.1148/radiol.11091710
- Fazal MI, Patel ME, Tye J, Gupta Y. The past, present and future role of artificial intelligence in imaging. Eur J Radiol 2018;105:246-250 https://doi.org/10.1016/j.ejrad.2018.06.020