DOI QR코드

DOI QR Code

Clinicoradiological Characteristics in the Differential Diagnosis of Follicular-Patterned Lesions of the Thyroid: A Multicenter Cohort Study

  • Jeong Hoon Lee (Department of Radiology, Ajou University School of Medicine) ;
  • Eun Ju Ha (Department of Radiology, Ajou University School of Medicine) ;
  • Da Hyun Lee (Department of Radiology, Ajou University School of Medicine) ;
  • Miran Han (Department of Radiology, Ajou University School of Medicine) ;
  • Jung Hyun Park (Department of Radiology, Ajou University School of Medicine) ;
  • Ji-hoon Kim (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine)
  • Received : 2022.02.10
  • Accepted : 2022.04.26
  • Published : 2022.07.01

Abstract

Objective: Preoperative differential diagnosis of follicular-patterned lesions is challenging. This multicenter cohort study investigated the clinicoradiological characteristics relevant to the differential diagnosis of such lesions. Materials and Methods: From June to September 2015, 4787 thyroid nodules (≥ 1.0 cm) with a final diagnosis of benign follicular nodule (BN, n = 4461), follicular adenoma (FA, n = 136), follicular carcinoma (FC, n = 62), or follicular variant of papillary thyroid carcinoma (FVPTC, n = 128) collected from 26 institutions were analyzed. The clinicoradiological characteristics of the lesions were compared among the different histological types using multivariable logistic regression analyses. The relative importance of the characteristics that distinguished histological types was determined using a random forest algorithm. Results: Compared to BN (as the control group), the distinguishing features of follicular-patterned neoplasms (FA, FC, and FVPTC) were patient's age (odds ratio [OR], 0.969 per 1-year increase), lesion diameter (OR, 1.054 per 1-mm increase), presence of solid composition (OR, 2.255), presence of hypoechogenicity (OR, 2.181), and presence of halo (OR, 1.761) (all p < 0.05). Compared to FA (as the control), FC differed with respect to lesion diameter (OR, 1.040 per 1-mm increase) and rim calcifications (OR, 17.054), while FVPTC differed with respect to patient age (OR, 0.966 per 1-year increase), lesion diameter (OR, 0.975 per 1-mm increase), macrocalcifications (OR, 3.647), and non-smooth margins (OR, 2.538) (all p < 0.05). The five important features for the differential diagnosis of follicular-patterned neoplasms (FA, FC, and FVPTC) from BN are maximal lesion diameter, composition, echogenicity, orientation, and patient's age. The most important features distinguishing FC and FVPTC from FA are rim calcifications and macrocalcifications, respectively. Conclusion: Although follicular-patterned lesions have overlapping clinical and radiological features, the distinguishing features identified in our large clinical cohort may provide valuable information for preoperative distinction between them and decision-making regarding their management.

Keywords

Acknowledgement

This work was supported by the Korean Thyroid Association Clinical Research Award 2019.

References

  1. Ha EJ, Chung SR, Na DG, Ahn HS, Chung J, Lee JY, et al. 2021 Korean thyroid imaging reporting and data system and imaging-based management of thyroid nodules: Korean Society of Thyroid Radiology consensus statement and recommendations. Korean J Radiol 2021;22:2094-2123 https://doi.org/10.3348/kjr.2021.0713
  2. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26:1-133 https://doi.org/10.1089/thy.2015.0020
  3. Tessler FN, Middleton WD, Grant EG, Hoang JK, Berland LL, Teefey SA, et al. ACR thyroid imaging, reporting and data system (TI-RADS): white paper of the ACR TI-RADS Committee. J Am Coll Radiol 2017;14:587-595 https://doi.org/10.1016/j.jacr.2017.01.046
  4. Cibas ES, Ali SZ. The 2017 Bethesda system for reporting thyroid cytopathology. Thyroid 2017;27:1341-1346 https://doi.org/10.1089/thy.2017.0500
  5. Baloch ZW, LiVolsi VA. Our approach to follicular-patterned lesions of the thyroid. J Clin Pathol 2007;60:244-250 https://doi.org/10.1136/jcp.2006.038604
  6. Jeong SH, Hong HS, Lee EH. Can nodular hyperplasia of the thyroid gland be differentiated from follicular adenoma and follicular carcinoma by ultrasonography? Ultrasound Q 2016;32:349-355 https://doi.org/10.1097/RUQ.0000000000000246
  7. Sillery JC, Reading CC, Charboneau JW, Henrichsen TL, Hay ID, Mandrekar JN. Thyroid follicular carcinoma: sonographic features of 50 cases. AJR Am J Roentgenol 2010;194:44-54 https://doi.org/10.2214/AJR.09.3195
  8. Li W, Song Q, Lan Y, Li J, Zhang Y, Yan L, et al. The value of sonography in distinguishing follicular thyroid carcinoma from adenoma. Cancer Manag Res 2021;13:3991-4002 https://doi.org/10.2147/CMAR.S307166
  9. Kuo TC, Wu MH, Chen KY, Hsieh MS, Chen A, Chen CN. Ultrasonographic features for differentiating follicular thyroid carcinoma and follicular adenoma. Asian J Surg 2020;43:339-346 https://doi.org/10.1016/j.asjsur.2019.04.016
  10. Park JW, Kim DW, Kim D, Baek JW, Lee YJ, Baek HJ. Korean thyroid imaging reporting and data system features of follicular thyroid adenoma and carcinoma: a single-center study. Ultrasonography 2017;36:349-354 https://doi.org/10.14366/usg.17020
  11. Yoon RG, Baek JH, Lee JH, Choi YJ, Hong MJ, Song DE, et al. Diagnosis of thyroid follicular neoplasm: fine-needle aspiration versus core-needle biopsy. Thyroid 2014;24:1612-1617 https://doi.org/10.1089/thy.2014.0140
  12. Glass RE, Marotti JD, Kerr DA, Levy JJ, Vaickus LJ, Gutmann EJ, et al. Using molecular testing to improve the management of thyroid nodules with indeterminate cytology: an institutional experience with review of molecular alterations. J Am Soc Cytopathol 2022;11:79-86 https://doi.org/10.1016/j.jasc.2021.08.004
  13. Ha EJ, Shin JH, Na DG, Jung SL, Lee YH, Paik W, et al. Comparison of the diagnostic performance of the modified Korean thyroid imaging reporting and data system for thyroid malignancy with three international guidelines. Ultrasonography 2021;40:594-601 https://doi.org/10.14366/usg.21056
  14. Chung SR, Ahn HS, Choi YJ, Lee JY, Yoo RE, Lee YJ, et al. Diagnostic performance of the modified Korean thyroid imaging reporting and data system for thyroid malignancy: a multicenter validation study. Korean J Radiol 2021;22:1579-1586 https://doi.org/10.3348/kjr.2021.0230
  15. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc 1996;58:267-288 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
  16. Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Stat Med 2002;21:2409-2419 https://doi.org/10.1002/sim.1047
  17. Ishwaran H, Kogalur UB. Fast unified random forests for survival, regression, and classification (RF-SRC). R package version 2.12.1. cran.r-project.org Web site. https://cran.r-project.org/web/packages/randomForestSRC/index.html. Published 2019. Accessed January 3, 2022
  18. Ishwaran H, O'Brien R. Commentary: the problem of class imbalance in biomedical data. J Thorac Cardiovasc Surg 2021;161:1940-1941 https://doi.org/10.1016/j.jtcvs.2020.06.052
  19. O'Brien R, Ishwaran H. A random forests quantile classifier for class imbalanced data. Pattern Recognit 2019;90:232-249 https://doi.org/10.1016/j.patcog.2019.01.036
  20. Kubat M, Holte R, Matwin S. Learning when negative examples abound. European Conference on Machine Learning. Berlin: Springer 1997
  21. Shin I, Kim YJ, Han K, Lee E, Kim HJ, Shin JH, et al. Application of machine learning to ultrasound images to differentiate follicular neoplasms of the thyroid gland. Ultrasonography 2020;39:257-265 https://doi.org/10.14366/usg.19069
  22. Hahn SY, Shin JH, Oh YL, Kim TH, Lim Y, Choi JS. Role of ultrasound in predicting tumor invasiveness in follicular variant of papillary thyroid carcinoma. Thyroid 2017;27:1177-1184 https://doi.org/10.1089/thy.2016.0677
  23. Jang EK, Kim WG, Choi YM, Jeon MJ, Kwon H, Baek JH, et al. Association between neck ultrasonographic findings and clinico-pathological features in the follicular variant of papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2015;83:968-976 https://doi.org/10.1111/cen.12674
  24. Rhee SJ, Hahn SY, Ko ES, Ryu JW, Ko EY, Shin JH. Follicular variant of papillary thyroid carcinoma: distinct biologic behavior based on ultrasonographic features. Thyroid 2014;24:683-688 https://doi.org/10.1089/thy.2013.0351
  25. Scheible W, Leopold GR, Woo VL, Gosink BB. High-resolution real-time ultrasonography of thyroid nodules. Radiology 1979;133:413-417 https://doi.org/10.1148/133.2.413
  26. Propper RA, Skolnick ML, Weinstein BJ, Dekker A. The nonspecificity of the thyroid halo sign. J Clin Ultrasound 1980;8:129-132 https://doi.org/10.1002/jcu.1870080206
  27. Lu C, Chang TC, Hsiao YL, Kuo MS. Ultrasonographic findings of papillary thyroid carcinoma and their relation to pathologic changes. J Formos Med Assoc 1994;93:933-938
  28. Na DG, Baek JH, Jung SL, Kim JH, Sung JY, Kim KS, et al. Core needle biopsy of the thyroid: 2016 consensus statement and recommendations from Korean Society of Thyroid Radiology. Korean J Radiol 2017;18:217-237 https://doi.org/10.3348/kjr.2017.18.1.217
  29. Shin HS, Na DG, Paik W, Yoon SJ, Gwon HY, Noh BJ, et al. Malignancy risk stratification of thyroid nodules with macrocalcification and rim calcification based on ultrasound patterns. Korean J Radiol 2021;22:663-671 https://doi.org/10.3348/kjr.2020.0381
  30. Lin Y, Lai S, Wang P, Li J, Chen Z, Wang L, et al. Performance of current ultrasound-based malignancy risk stratification systems for thyroid nodules in patients with follicular neoplasms. Eur Radiol 2022;32:3617-3630 https://doi.org/10.1007/s00330-021-08450-3