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A GAN is a deep learning technique that enables the 
generation of new images from unlabeled original images 
[1]. GANs can learn the data distribution from training 
samples and generate realistic imaging data that have a 
similar distribution to the original data but are otherwise 
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different [2-5]. Image generation using a GAN is an 
attractive solution to overcome the limitations of small 
datasets [6,7], and the generated images eventually become 
data inputs and expand the use of deep learning algorithms. 
Brain tumor imaging using MRI is of particular interest for 
the clinical application of image generation using GAN, 
because rare tumor types and the use of multiparametric 
imaging sequences tend to result in insufficient or 
incomplete imaging datasets. Although studies have 
demonstrated the technical feasibility of GANs for creating 
synthetic images for various purposes, such as filling in 
missing images [8], cross-modality transfer [9], improving 
image quality by denoising or creating super-resolution for 
CT [10], MRI [11,12], and PET [13], or segmentation tasks 
in brain tumors [14], few studies have targeted the clinical 
implications and evaluated the real-world clinical utility of 
generative imaging. 

A potential clinical use case of image generation using 
GAN is enabling reduced or no use of gadolinium-based 
contrast agents (GBCAs) by generating virtual contrast-
enhanced T1-weighted images (vc-T1WI) from non-
enhanced sequences. Although injection of GBCAs is 
generally considered a safe procedure, 1.5% of patients 
have mild adverse reactions [15], and there is general 
agreement that the safety concerns associated with GBCA 
should be minimized. The feasibility of creating synthetic 
vc-T1WI for brain MRI was demonstrated using multi-
parametric non-contrast T1WI, T2-weighted images (T2WI), 
fluid-attenuated inversion recovery (FLAIR) images, 
diffusion-weighted images, susceptibility-weighted images; 
diagnostic quality tests and quantitative evaluations were 
performed [16]. The metrics used to evaluate the quality 
of GAN-generated images are generally either qualitative 

Take-home points
•  A generative adversarial network (GAN) is a deep 

learning technique that enables the generation of 
new images from unlabeled original images.

•  Brain tumor imaging using MRI is an area of 
particular interest for clinical application of image 
generation using GAN.

•  A recent study demonstrated that the time to 
progression of glioblastoma can be accurately 
predicted using synthetic post-contrast MR images.

•  GANs can be clinically validated when used as 
an adjunct to imaging-based deep learning 
segmentation or classification tasks. 

•  Further investigations are warranted to determine 
whether GAN-based synthetic post-contrast MR 
images may substitute real images.

Korean J Radiol 2022;23(5):500-504

eISSN 2005-8330
https://doi.org/10.3348/kjr.2022.0033

Editorial

Received: January 13, 2022   Revised: February 13, 2022   
Accepted: February 15, 2022
Corresponding author: Ji Eun Park, MD, PhD, Department of 
Radiology and Research Institute of Radiology, University of Ulsan 
College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, 
Songpa-gu, Seoul 05505, Korea.
• E-mail: jieunp@gmail.com
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution Non-Commercial License 
(https://creativecommons.org/licenses/by-nc/4.0) which permits 
unrestricted non-commercial use, distribution, and reproduction in 
any medium, provided the original work is properly cited. 

http://crossmark.crossref.org/dialog/?doi=10.3348/kjr.2022.0033&domain=pdf&date_stamp=2022-04-18


501

Synthetic Contrast-Enhanced Images in Glioblastoma

https://doi.org/10.3348/kjr.2022.0033kjronline.org

(Turing test) or structural similarity indices and the peak 
signal-to-noise ratio. In addition to the limited number 
of clinical implementations, there is a lack of evaluation 
metrics for determining the clinical performance of GANs 
applied to patient data; thus, they are undertested and not 
widely applied.

Recently, Jayachandran Preetha et al. [17] investigated 
the synthesis of post-contrast MRI sequences using pre-
contrast MRI sequences, filling in the absence of imaging 
data for imaging evaluation of glioblastoma (Fig. 1). Their 
work was unique in that it encompassed both an image-
to-image-based task using a GAN and an image-based task 
using UNet to assess tumor responses in neuro-oncology. 
Clinical utility was demonstrated by incorporating MRI data 
from three phase 2 and 3 clinical trials with over 2000 
patients. The authors evaluated the clinical performance 

using an image-based artificial intelligence method for 
tumor volumetry. Their results showed that prediction of 
volumetrically-defined time-to-progression was possible 
with synthetic post-contrast MRI images, and automatic 
volumetry revealed—on average—no significant difference 
(0.1 months) between synthetic and true post-contrast MRI 
sequences. Therefore, very similar performances between 
synthetic and true post-contrast MRI data in predicting the 
overall survival were demonstrated. 

From this hypothesis-generating study [17], we can 
obtain ideas about how to apply and validate GANs in 
clinical cases. First, synthetic images can be used as direct 
substitutes for real images and can make the use contrast 
media for MRI or CT imaging or an additional radiation 
exposure for X-ray, CT, or PET imaging optional, thereby 
reducing the harm or cost associated with the extra imaging 

Fig. 1. Examples of virtual contrast-enhanced T1-weighted images using generative model for glioblastoma, IDH-wild type (left), 
as compared with real images of glioblastoma, IDH-wild type (right). IDH = isocitrate dehydrogenase
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procedures. The utility of a GAN can be demonstrated by 
generating synthetic data to fill in the absent or insufficient 
data in a multicenter trial [18]. Second, because evaluation 
metrics applied to images are often based on technical 
similarity or image quality itself, the clinical performance of 
synthetic images can be measured to fulfill further image-
based tasks of detection, segmentation, and classification, 
which are often used as evaluation metrics to determine the 
clinical utility of imaging (Fig. 2). Currently, the evaluation 
metrics applied to GANs largely focus on the image quality 
and diversity of the generated images [19], often without a 
clear reference standard [20]. The diversity of the generated 
images was clinically shown in a study on the radiologic 
features of molecular subtypes of gliomas on MRI [21]. 
Likewise, when used as an adjunct to imaging-based tasks 
of segmentation or classification, the clinical performance 
of generative images and models can be measured, and 
it can be determined whether they would have a clinical 
impact by enhancing datasets, reducing harm, or increasing 
benefit. 

However, whether virtual GBCA enhancement can replace 
contrast-enhanced T1WI in neuro-oncology remains to be 
addressed. The imaging requisites for synthetic vc-T1WI 
were multi-parametric imaging, including T1WI, T2WI, FLAIR 
[17], and additional diffusion-weighted and susceptibility-
weighted sequences [16]. A feasibility study showed that 
diffusion-weighted imaging and T2WI contributed to 
demonstrating peritumoral edema, cellularity, and necrosis 
[16], while Jayachandran Preetha et al. [17] found that 
T2WI and FLAIR contributions were larger than diffusion-
weighted imaging because the contrast enhancement of 
brain tumors is based on disruption of the blood-brain 

barrier, not on cellularity. The different prerequisites for 
imaging sequences show that the technique is yet to be 
optimized and further studies are warranted. As a clinical 
task, glioblastoma is a large tumor for which tumor 
segmentation produces a reliable measurement, but the 
identification of comparatively subtle and small contrast 
enhancements, for example, in brain metastasis and lower-
grade gliomas (or active lesions in multiple sclerosis), is far 
more challenging because the available information in pre-
contrast MRI sequences for this task might be insufficient 
and because synthetic images are limited (distorted) with 
respect to small vessel structures and image smoothness, 
rather than the generation of large enhancing (tumor) 
regions. One potential strategy to—at least partially—
address these limitations could be the use of low-dose GBCA 
administration schemes (e.g., with 10% of the full-dose) 
and use GAN-based approaches to synthesize (virtual) full-
dose contrast-enhanced T1WI [22]. Finally, the benefit of 
GBCA excels the potential adverse effects in glioblastoma, 
especially in the differentiation of pseudoprogression from 
true progression when brain MRI is crucial for an early 
diagnosis and accurate diagnosis needs to be pursued rather 
than reducing GBCA because the diagnosis substantially 
impacts patient treatment. 

In summary, by generating post-contrast enhancement 
images as an adjunct to deep learning segmentation, GANs 
can be useful for the quantitative measurement of surrogate 
endpoints of tumor progression. As there is no clear 
reference standard for measuring the clinical performance 
of GAN, adjunctive imaging-based tasks of deep learning 
segmentation or classification will help measure the clinical 
performance of GAN. Image generation using GAN may 

Generated images
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Fig. 2. Diagram demonstrating how generative imaging can be used and validated in a clinical workflow. Generative images can be 
applied during the data input stage and may improve prediction performance during every process of artificial intelligence in neuro-oncologic 
imaging, including detection, segmentation, and subsequent classification. FLAIR = fluid-attenuated inversion recovery
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potentially add substantial value by reducing the risks 
associated with imaging, including the use of contrast 
agents or radiation exposure. 
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