DOI QR코드

DOI QR Code

Effect of Nonylphenol on the Structure of Adrenal Cortex in F1 Generation Rats

  • Hee-Su Kim (Department of Biotechnology, Sangmyung University) ;
  • Sung-Ho Lee (Department of Biotechnology, Sangmyung University)
  • 투고 : 2022.09.30
  • 심사 : 2022.12.14
  • 발행 : 2022.12.31

초록

Previous studies, including our own, indicate that distinct morphological changes in rodent adrenal cortex could be induced by exposure of endocrine disrupting chemicals (EDC). In the present study, we conducted histological analyses of adrenocortical substructure using a nonylphenol-treated F1 rat model. The adrenal weight of NP-5000 group was significantly declined in female rats (p<0.001), while the adrenal weights of NP-treated groups were not significantly changed in male rats. The thickness of zona glomerulosa layers of female rats in NP-5000 group was significantly declined (p<0.001) but zona fasciculata layers were not changed. The zona reticularis layers of NP-treated group were significantly thinner than those of control group (NP-50, p<0.05; NP-5000, p<0.01). In male adrenal glands, there was no significant change of zona glomerulosa layers in NP-treated groups while the thickness of zona fasciculata in NP-5000 group was significantly decreased (p<0.01). Like female rats, the thickness of zona reticularis in NP-treated groups was significantly decreased (NP-50, p<0.001; NP-5000, p<0.05). Present study demonstrated that the adrenal histology could be altered by low-dose NP exposure in F1 rats, and the effect might be sexually dimorphic. Further study will be helpful for understanding possible adrenal pathophysiology induced by EDC exposure, and EDC-related sexually dimorphic phenomena in rodent adrenals.

키워드

참고문헌

  1. Capaldo A, Gay F, Valiante S, De Falco M, Sciarrillo R, Maddaloni M, Laforgia V (2012) Endocrine-disrupting effects of nonylphenol in the newt, Triturus carnifex (Amphibia, Urodela). Comp Biochem Physiol C Toxicol Pharmacol 155:352-358. https://doi.org/10.1016/j.cbpc.2011.10.004
  2. Chang LL, Wun WS, Wang PS (2012) Effects of nonylphenol on aldosterone release from rat zona glomerulosa cells. Chem Biol Interact 195:11-17. https://doi.org/10.1016/j.cbi.2011.09.004
  3. Chang LL, Wun WS, Wang PS (2014) Recovery from developmental nonylphenol exposure is possible for female rats. Chem Biol Interact 221:52-60. https://doi.org/10.1016/j.cbi.2014.07.010
  4. Chang LL, Wun WSA, Wang PS (2010) Effects and mechanisms of nonylphenol on corticosterone release in rat zona fasciculata-reticularis cells. Toxicol Sci 118:411-419. https://doi.org/10.1093/toxsci/kfq274
  5. Chapin RE, Delaney J, Wang Y, Lanning L, Davis B, Collins B, Mintz N, Wolfe G (1999) The effects of 4-nonylphenol in rats: A multigeneration reproduction study. Toxicol Sci 52:80-91. https://doi.org/10.1093/toxsci/52.1.80
  6. De Falco M, Sellitti A, Sciarrillo R, Capaldo A, Valiante S, Iachetta G, Forte M, Laforgia V (2014) Nonylphenol effects on the HPA axis of the bioindicator vertebrate, Podarcis sicula lizard. Chemosphere 104:190-196. https://doi.org/10.1016/j.chemosphere.2013.11.014
  7. Di Lorenzo M, Barra T, Rosati L, Valiante S, Capaldo A, De Falco M, Laforgia V (2020). Adrenal gland response to endocrine disrupting chemicals in fishes, amphibians and reptiles: A comparative overview. Gen Comp Endocrinol 297:113550.
  8. Dumontet T, Sahut-Barnola I, Septier A, Montanier N, Plotton I, Roucher-Boulez F, Ducros V, Lefrancois-Martinez AM, Pointud JC, Zubair M, Morohashi KI, Breault DT, Val P, Martinez A (2018) PKA signaling drives reticularis differentiation and sexually dimorphic adrenal cortex renewal. JCI Insight 25;3:e98394.
  9. Fu X, Xu J, Ni C, Yu D, Wang H, Wang P, Luo M, Yu J (2022) Effects of subchronic exposure of nonylphenol on the expression of immune-related factors and estrogen receptors in the spleen of rats. Environ Sci Eur 34:30.
  10. Gong Y, Han XD (2006) Nonylphenol-induced oxidative stress and cytotoxicity in testicular Sertoli cells. Reprod Toxicol 22:623-630. https://doi.org/10.1016/j.reprotox.2006.04.019
  11. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT (2015) The endocrine society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev 36:E1-E150.
  12. Grabek A, Dolfi B, Klein B, Jian-Motamedi F, Chaboissier MC, Schedl A (2019) The adult adrenal cortex undergoes rapid tissue renewal in a sex-specific manner. Cell Stem Cell 25:290-296. https://doi.org/10.1016/j.stem.2019.04.012
  13. Kim YB, Cheon YP, Choi D, Lee SH (2020) Histological analysis of reproductive system in low-dose nonylphenol-treated F1 female mice. Dev Reprod 24:159-165. https://doi.org/10.12717/DR.2020.24.3.159
  14. Lee BY, Jo JB, Choi D, Lee SH, Cheon YP (2021) A chronic low-dose exposing of DEHP with OECD TG 443 altered the histological characteristics and steroidogeic gene expression of adrenal gland in female mice. Dev Reprod 25:257-268. https://doi.org/10.12717/DR.2021.25.4.257
  15. Lindholm J, Juul S, Jorgensen JOL, Astrup J, Bjerre P, Feldt-Rasmussen U, Hagen C, Jorgensen J, Kosteljanetz M, Kristensen LO, Laurberg P, Schmidt K, Weeke J (2001) Incidence and late prognosis of Cushing's syndrome: A population-based study. J Clin Endocrinol Metab 86:117-123.
  16. Liu PS, Liu GH, Chao WL (2008) Effects of nonylphenol on the calcium signal and catecholamine secretion coupled with nicotinic acetylcholine receptors in bovine adrenal chromaffin cells. Toxicology 244:77-85. https://doi.org/10.1016/j.tox.2007.11.005
  17. Lotfi M, Hasanpour AH, Moghadamnia AA, Kazemi S (2021) The Investigation into neurotoxicity mechanisms of nonylphenol: A narrative review. Curr Neuropharmacol 19:1345-1353. https://doi.org/10.2174/1570159X18666201119160347
  18. Lyraki R, Schedl A (2021) The sexually dimorphic adrenal cortex: Implications for adrenal disease. Int J Mol Sci 22:4889.
  19. Miller WL, Auchus RJ (2011) The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 32:81-151. https://doi.org/10.1210/er.2010-0013
  20. Mitani F (2014) Functional zonation of the rat adrenal cortex: The development and maintenance. Proc Jpn Acad Ser B Phys Biol Sci 90:163-183. https://doi.org/10.2183/pjab.90.163
  21. Nagao T, Wada K, Marumo H, Yoshimura S, Ono H (2001) Reproductive effects of nonylphenol in rats after gavage administration: A two-generation study. Reprod Toxicol 15:293-315. https://doi.org/10.1016/S0890-6238(01)00123-X
  22. Pattison JC, Abbott DH, Saltzman W, Conley AJ, Bird IM. Plasticity of the zona reticularis in the adult marmoset adrenal cortex: Voyages of discovery in the New World. J Endocrinol (2009) 203:313-326. https://doi.org/10.1677/JOE-08-0554
  23. Pihlajoki M, Dorner J, Cochran RS, Heikinheimo M, Wilson DB (2015) Adrenocortical zonation, renewal, and remodeling. Front Endocrinol (Lausanne) 6:27.
  24. Ribelin WE (1984) The effects of drugs and chemicals upon the structure of the adrenal gland. Fundam Appl Toxicol 4:105-119. https://doi.org/10.1016/0272-0590(84)90224-0
  25. Sanderson JT (2006) The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol Sci 94:3-21. https://doi.org/10.1093/toxsci/kfl051
  26. Steffensen C, Bak AM, Zoylner Rubeck K, Jorgensen JOL (2010) Epidemiology of Cushing's syndrome. Neuroendocrinology 92:1-5.
  27. Su Y, Quan C, Li X, Shi Y, Duan P, Yang K (2018) Mutual promotion of apoptosis and autophagy in prepubertal rat testes induced by joint exposure of bisphenol A and nonylphenol. Environ Pollut 243:693-702.
  28. Szabo S, Lippe IT (1989) Adrenal gland: Chemically induced structural and functional changes in the cortex. Toxicol Pathol 17:317-329. https://doi.org/10.1177/019262338901700208
  29. Urriola-Munoz P, Lagos-Cabre R, Patino-Garcia D, Reyes JG, Moreno RD (2018) Bisphenol-A and nonylphenol Induce apoptosis in reproductive tract cancer cell lines by the activation of ADAM17. Int J Mol Sci 19:31.
  30. United States Environmental Protection Agency [USEPA] (1990) Testing consent order on 4-nonylphenol. Fed Regist 35:5991-5994.
  31. Walczak EM, Hammer GD (2015) Regulation of the adrenocortical stem cell niche: Implications for disease. Nat Rev Endocrinol 11:14-28. https://doi.org/10.1038/nrendo.2014.166
  32. Whitehead SA, Rice S (2006) Endocrine-disrupting chemicals as modulators of sex steroid synthesis. Best Pract Res Clin Endocrinol Metab 20:45-61. https://doi.org/10.1016/j.beem.2005.09.003
  33. Yaglova NV, Obernikhin SS, Nazimova SV, Yaglov VV (2019) Role of transcription factor Oct4 in postnatal development and function of the adrenal cortex. Bull Exp Biol Med 167:568-573. https://doi.org/10.1007/s10517-019-04573-2
  34. Yaglova NV, Obernikhin SS, Tsomartova DA, Nazimova SV, Yaglov VV, Tsomartova ES, Chereshneva EV, Ivanova MY, Lomanovskaya TA (2021) Impaired morphogenesis and function of rat adrenal zona glomerulosa by developmental low-dose exposure to DDT Is associated with altered Oct4 expression. Int J Mol Sci 22:6324.
  35. Yates R, Katugampola H, Cavlan D, Cogger K, Meimaridou E, Hughes C, Metherell L, Guasti L, King P (2013) Adrenocortical development, maintenance, and disease. Curr Top Dev Biol 106:239-312. https://doi.org/10.1016/B978-0-12-416021-7.00007-9
  36. Yu J, Yang J, Luo Y, Mengxue Y, Li W, Yang Y, He L, Xu J (2018) The adverse effects of chronic low-dose exposure to nonylphenol on type 2 diabetes mellitus in high sucrose-high fat diet-treated rats. Islets 10:1-9. https://doi.org/10.1080/19382014.2017.1404211