과제정보
This research was supported by the Korean Nuclear R&D Program 2021M2E4A1037979) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, and partially funded by the Korean R&D program (RS-2022-00143718). The authors thank Mr. Tae-Young Kim for complementary FE analysis.
참고문헌
- D. Feron, J.M. Olive (Eds.), Corrosion Issues in Light Water Reactors - Stress Corrosion Cracking, Woodhead Publishing Ltd., New York, 2007.
- M. Le Calvar, I. De Curieres, Corrosion issues in pressurized water reactor (PWR) systems, Nucl, Corros. Sci. Eng (2012) 473-547.
- R.W. Staehle, Quantitative micro-nano (QMN) approach to SCC mechanism and prediction-starting a third meeting, in: Proc. 15th Int. Conf. On Env. Deg. Mater. Nucl. Power Syst, - Water Reactors, Colorado Springs, 2011, pp. 1535-1625.
- Y.S. Garud, A Simplified Model for Assessment of SCC Initiation Time in Alloy 600, EPRI, TR-109137, 1997. Palo Alto.
- Y.S. Garud, Validation of Stress Corrosion Cracking Initiation Model for Stainless Steel and Nickel Alloys: Effects of Cold Work, EPRI, TR-1025121, Palo Alto, 2012.
- Z. Zhai, M.B. Toloczko, M.J. Olszta, S.M. Bruemmer, Stress corrosion crack initiation of alloy 600 in PWR primary water, Corrosion Sci. 123 (2017) 76-87. https://doi.org/10.1016/j.corsci.2017.04.013
- D.A. Jones, Principles and Prevention of Corrosion (2nd Ed.), Prentice Hall, Upper Saddle River, 1995.
- ASTM International, Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens, 2003. ASTM G30-97, West Conshohocken.
- JSA, Stress Corrosion Cracking Testing of Metals and Alloy Using Reverse U-Bend Test Method, JIS G 0511, 2006. Tokyo.
- ASTM International, Standard Practice for Making and Using C-Ring Stress-Corrosion Test Specimens, 2007. ASTM G38-01, West Conshohocken.
- P.L. Andresen, L.M. Young, G.M. Catlin, P.W. Emich, G.M. Gordon, Stress-corrosion-crack initiation and growth-rate studies on titanium grade 7 and Alloy 22 in concentrated groundwater, Metall. Mater. Trans. 36A (2005) 1187-1198.
- E. Richey, D.S. Morton, M.K. Schurman, SCC initiation testing of nickel-based alloys using in-situ monitored uniaxial tensile specimens, in: Proc. 12th Int. Conf. On Env. Deg. Mater. Nucl. Power Syst, Water Reactors, Salt Lake City, 2005, pp. 947-956.
- K. Takakura, K. Nakata, K. Fujiomoto, K. Sakima, N. Kubo, IASCC properties of cold worked 316 stainless steel in PWR primary water, in: Proc. 14th Int. Conf. On Env. Deg. Mater. Nucl. Power Syst, Water Reactors, Virginia Beach, 2009, pp. 1207-1218.
- S. Pemberton, J. Beswick, M. Chatterton, J. Meadows, S. Medway, Proc.. in: Proc. 19th Int. Conf. On Env. Deg. Mater. Nucl. Power Syst, Water Reactors, Boston, 2019, pp. 346-355.
- P.J. Meadows, P.L. Andresen, M.B. Toloczko, W.-J. Kuang, S. Ritter, M. Bjurman, L. Zhang, M. Ernestova, A. Toivonen, F. Perosanz-Lopez, J.W. Stairmand, K.J. Mottershead, International round-robin on stress corrosion crack initiation of Alloy 600 material in pressurized water reactor primary water, Corrosion 76 (2020) 719-733. https://doi.org/10.5006/3532
- ASTM International, Standard Test Method for Measurement of Fatigue Crack Growth Rates, 2005. ASTM E 647-05, West Conshohocken.
- P.L. Andresen, M.M. Morra, K. Ahluwalia, J. Wilson, Proc.. in: Proc. 14th Int. Conf. On Env. Deg. Mater. Nucl. Power Syst, Water Reactors, Virginia, 2009, pp. 846-887.
- D.J. Kim, H.P. Kim, S.S. Hwang, Susceptibility of alloy 690 to stress corrosion cracking in caustic aqueous solutions, Nucl. Eng. Technol. 45 (2013) 67-72. https://doi.org/10.5516/NET.07.2012.021
- S.M. Bruemmer, M.J. Olszta, N.R. Overman, M.B. Toloczko, Cold-work effects on stress corrosion cracking growth in Alloy 690 tubing and plate materials, in: Proc. 17th Int. Conf. On Env. Deg. Mater. Nucl. Power Syst, - Water Reactors, Ontario, 2015, pp. 1-17.
- Y.S. Lim, D.J. Kim, S.W. Kim, H.P. Kim, Crack growth and cracking behavior of Alloy 600/182 and Alloy 690/152 welds in simulated PWR primary water, Nucl. Eng. Technol. 51 (2019) 228-237. https://doi.org/10.1016/j.net.2018.09.011
- S.W. Kim, K.H. Eom, Y.S. Lim, D.J. Kim, PWSCC growth rate model of alloy 690 for head penetration nozzles of Korean PWRs, Nucl. Eng. Technol. 51 (2019) 1060-1068. https://doi.org/10.1016/j.net.2019.01.010
- T. Moss, W. Kuang, G.S. Was, Stress corrosion crack initiation in Alloy 690 in high temperature water, Curr. Opin. Solid State Mater. Sci. 22 (2018) 16-25. https://doi.org/10.1016/j.cossms.2018.02.001
- Chikezie Nwaoha, Process Plant Equipment: Operation, Control, and Reliability, first ed., John Wiley & Sons, Inc, 2012.
- P. Scott, P. Combrade, R. Kilian, A. Roth, P. Andresen, Y. Kim, Status review of initiation of environmentally assisted cracking and short crack growth, EPRI report (2005), 1011788. Palo Alto.
- V.I. Vodyanik, Design of safety rupture discs, Chem. Petrol. Eng. 8 (1972) 586-588. https://doi.org/10.1007/BF01139117
- ASTM Interntional, Standard Test Methods for Determining Average Grain Size, 2010. ASTM E112-10, West Conshohocken.
- H. Zhu, W. Xu, Z. Luo, H. Zheng, Finite element analysis on the temperature-dependent burst behavior of domed 316l austenitic stainless steel rupture disc, Metals 10 (2020) 1-11.
- R.W. Werne, Stress Analysis of a Rupture Disk, UCID-16761, University of California, 1975.
- I. Simonovski, S. Holmstroem, M. Bruchhausen, Small punch tensile testing of curved specimens: finite element analysis and experiment, Int. J. Mech. Sci. 120 (2017) 204-213. https://doi.org/10.1016/j.ijmecsci.2016.11.029
- X. Kong, J. Zhang, X. Li, Z. Jin, H. Zhong, Y. Zhan, F. Han, Procedia Manuf. 15 (2018) 892-898. https://doi.org/10.1016/j.promfg.2018.07.408
- J. Peng, V.D. Vijayannd, D. Knowles, C. Truman, M. Mostafavi, Int. J. Pres. Ves. Pip. 193 (2021), 104468.