DOI QR코드

DOI QR Code

Electrochemical oxidation of sodium dodecylbenzenesulfonate in Pt anodes with Y2O3 particles

  • Jung-Hoon Choi (Radioactive Waste Treatment Research Team, Korea Atomic Energy Research Institute) ;
  • Byeonggwan Lee (Radioactive Waste Treatment Research Team, Korea Atomic Energy Research Institute) ;
  • Ki-Rak Lee (Radioactive Waste Treatment Research Team, Korea Atomic Energy Research Institute) ;
  • Hyun Woo Kang (Radioactive Waste Treatment Research Team, Korea Atomic Energy Research Institute) ;
  • Hyeon Jin Eom (Radioactive Waste Treatment Research Team, Korea Atomic Energy Research Institute) ;
  • Seong-Sik Shin (Radioactive Waste Treatment Research Team, Korea Atomic Energy Research Institute) ;
  • Ga-Yeong Kim (Radioactive Waste Treatment Research Team, Korea Atomic Energy Research Institute) ;
  • Geun-Il Park (Radioactive Waste Treatment Research Team, Korea Atomic Energy Research Institute) ;
  • Hwan-Seo Park (Radioactive Waste Treatment Research Team, Korea Atomic Energy Research Institute)
  • Received : 2022.02.22
  • Accepted : 2022.08.09
  • Published : 2022.12.25

Abstract

The electrochemical oxidation process has been widely studied in the field of wastewater treatment for the decomposition of organic materials through oxidation using ·OH generated on the anode. Pt anode electrodes with high durability and long-term operability have a low oxygen evolution potential, making them unsuitable for electrochemical oxidation processes. Therefore, to apply Pt electrodes that are suitable for long-term operation and large-scale processes, it is necessary to develop a new method for improving the decomposition rate of organic materials. This study introduces a method to improve the decomposition rate of organic materials when using a Pt anode electrode in the electrochemical oxidation process for the treatment of organic decontamination liquid waste. Electrochemical decomposition tests were performed using sodium dodecylbenzenesulfonate (SDBS) as a representative organic material and a Pt mesh as the anode electrode. Y2O3 particles were introduced into the electrolytic cell to improve the decomposition rate. The decomposition rate significantly improved from 21% to 99%, and the current efficiency also improved. These results can be applied to the electrochemical oxidation process without additional system modification to enhance the decomposition rate and current efficiency.

Keywords

Acknowledgement

This work was supported by a Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (20201520300130, Development of Treatment Process of Organic Decontamination Liquid Wastes from Decommissioning of Nuclear Power Plants).

References

  1. H.W. Seo, W. Sohn, K.H. Jo, Proposal for the spent nuclear fuel management plan from the decommissioning of Kori site NPPs, Ann. Nucl. Energy 120 (2018) 749-762, https://doi.org/10.1016/j.anucene.2018.06.037.
  2. J.K. Moon, S.B. Kim, W.K. Choi, B.S. Choi, D.Y. Chung, B.K. Seo, The status and prospect of decommissioning technology development at KAERI, JNFCWT 17 (2019) 139-165.
  3. A. Anglada, A. Urtiaga, I. Ortiz, Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications, J. Chem. Technol. Biotechnol. 84 (2009) 1747-1755, https://doi.org/10.1002/jctb.2214.
  4. I. Sires, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review, Environ. Sci. Pollut. Res. Int. 21 (2014) 8336e8367, https://doi.org/10.1007/s11356-014-2783-1.
  5. C.A. Martinez-Huitle, M.A. Rodrigo, I. Sires, O. Scialdone, Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review, Chem. Rev. 115 (2015) 13362-13407, https://doi.org/10.1021/acs.chemrev.5b00361.
  6. B. Louhichi, M.F. Ahmadi, N. Bensalah, A. Gadri, M.A. Rodrigo, Electrochemical degradation of an anionic surfactant on boron-doped diamond anodes, J. Hazard Mater. 158 (2008) 430-437, https://doi.org/10.1016/j.jhazmat.2008.01.093.
  7. T. Ochiai, Y. Iizuka, K. Nakata, T. Murakami, D.A. Tryk, A. Fujishima, Y. Koide, Y. Morito, Efficient electrochemical decomposition of perfluorocarboxylic acids by the use of a boron-doped diamond electrode, Diam. Relat. Mater. 20 (2011) 64-67, https://doi.org/10.1016/j.diamond.2010.12.008.
  8. G. Loos, T. Scheers, K. Van Eyck, A. Van Schepdael, E. Adams, B. Van der Bruggen, D. Cabooter, R. Dewil, Electrochemical oxidation of key pharmaceuticals using a boron doped diamond electrode, Separ. Purif. Technol. 195 (2018) 184-191, https://doi.org/10.1016/j.seppur.2017.12.009.
  9. R.N. Goyal, V.K. Gupta, S. Chatterjee, Electrochemical oxidation of 2',3'-dideoxyadenosine at pyrolytic graphite electrode, Electrochim. Acta 53 (2008) 5354e5360, https://doi.org/10.1016/j.electacta.2008.02.059.
  10. D. Shao, J. Liang, X. Cui, H. Xu, W. Yan, Electrochemical oxidation of lignin by two typical electrodes: Ti/SbSnO2 and Ti/PbO2, Chem. Eng. J. 244 (2014) 288-295, https://doi.org/10.1016/j.cej.2014.01.074.
  11. S. Chen, P. He, X. Wang, F. Xiao, P. Zhou, Q. He, L. Jia, F. Dong, H. Zhang, B. Jia, H. Liu, B. Tang, Co/Sm-modified Ti/PbO2 anode for atrazine degradation: effective electrocatalytic performance and degradation mechanism, Chemosphere 268 (2021), 128799, https://doi.org/10.1016/ j.chemosphere.2020.128799.
  12. H. Han, J. Lyu, L. Zhu, G. Wang, C. Ma, H. Ma, Fabrication of BN modified Ti/PbO2 electrodes with tunable hydrophobic characteristics and their electrocatalytic performance, J. Alloys Compd. 828 (2020), https://doi.org/10.1016/j.jallcom.2020.154049. http://www.ncbi.nlm.nih.gov/pubmed/154049.
  13. T.E.S. Santos, R.S. Silva, C.C. Carlesi Jara, K.I.B. Eguiluz, G.R. Salazar-Banda, The influence of the synthesis method of Ti/RuO2 electrodes on their stability and catalytic activity for electrochemical oxidation of the pesticide carbaryl, Mater. Chem. Phys. 148 (2014) 39-47, https://doi.org/10.1016/j.matchemphys.2014.07.007.
  14. A. Alaoui, K. El Kacemi, K. El Ass, S. Kitane, S. El Bouzidi, Activity of Pt/MnO2 electrode in the electrochemical degradation of methylene blue in aqueous solution, Separ. Purif. Technol. 154 (2015) 281-289, https://doi.org/10.1016/j.seppur.2015.09.049.
  15. T. Wu, G. Zhao, Y. Lei, P. Li, Distinctive tin dioxide anode fabricated by pulse electrodeposition: high oxygen evolution potential and efficient electrochemical degradation of fluorobenzene, J. Phys. Chem. C 115 (2011) 3888-3898, https://doi.org/10.1021/jp110149v.
  16. S.B. Hall, E.A. Khudaish, A.L. Hart, Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part V: inhibition by chloride, Acta 45 (2000) 3573-3579, https://doi.org/10.1016/S0013-4686(00)00481-3.
  17. C. Zhou, Y. Wang, J. Chen, J. Niu, Electrochemical degradation of sunscreen agent benzophenone-3 and its metabolite by Ti/SnO2-Sb/Ce-PbO2 anode: kinetics, mechanism, toxicity and energy consumption, Sci. Total Environ. 688 (2019) 75-82, https://doi.org/10.1016/j.scitotenv.2019.06.197.
  18. J. Kim, D. Kim, Y.J. Gwon, K.W. Lee, T.S. Lee, Removal of sodium dodecylbenzenesulfonate by macroporous adsorbent resins, Materials 11 (2018) 1324, https://doi.org/10.3390/ma11081324.
  19. Y. Katayama, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical oxidation of ammonia over rare earth oxide modified platinum catalysts, J. Phys. Chem. C 119 (2015) 9134-9141, https://doi.org/10.1021/acs.jpcc.5b01710.
  20. C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou, M. Zhou, Three-dimensional electrochemical process for wastewater treatment: a general review, Chem. Eng. J. 228 (2013) 455-467, https://doi.org/10.1016/j.cej.2013.05.033.
  21. J. Cheng, H. Yang, C. Fan, R. Li, X. Yu, H. Li, Review on the applications and development of fluidized bed electrodes, J. Solid State Electrochem. 24 (2020) 2199-2217, https://doi.org/10.1007/210008-020-04786-w.
  22. A. Takayanagi, M. Kobayashi, Y. Kawase, Removal of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) from wastewaters by zero-valent iron (ZVI): predominant removal mechanism for effective SDBS removal, Environ. Sci. Pollut. Res. 24 (2017) 8087-8097, https://doi.org/10.1007/s11356-017-8493-8.