DOI QR코드

DOI QR Code

Assessment of turbulent heat flux models for URANS simulations of turbulent buoyant flows in ROCOM tests

  • Received : 2021.12.20
  • Accepted : 2022.07.16
  • Published : 2022.11.25

Abstract

Turbulent mixing in buoyant flows is an essential mechanism involved in many scenarios related to nuclear safety in nuclear power plants. Comprehensive understanding and accurate predictions of turbulent buoyant flows in the reactor are of crucial importance, due to the function of mitigating the potential detrimental consequences during postulated accidents. The present study uses URANS methodology to investigate the buoyancy-influenced flows in the reactor pressure vessel under the main steam line break accident scenarios. With a particular focus on the influence of turbulent heat flux closure models, various combinations of two turbulence models and three turbulent heat flux models are utilized for the numerical simulations of three ROCOM tests which have different characteristic features in terms of the flow rate and fluid density difference between loops. The simulation results are compared with experimental measurements of the so-called mixing scalar in the downcomer and at the core inlet. The study shows that the anisotropic turbulent heat flux models are able to improve the accuracy of the predictions under conditions of strong buoyancy whilst in the weak buoyancy case, a major role is played by the selected turbulence models with essentially a negligible influence of the turbulent heat flux closure models.

Keywords

Acknowledgement

This research was conducted within the frame work of the Steady-State, Transient and Radiation Safety Analyses (STARS) program at PSI. The authors would like to acknowledge China Scholarship Council (CSC) for the financial support.

References

  1. CSNI, Solving Thermal Hydraulic Safety Issues for Current and New Pressurised Water Reactor Design Concepts, NEA/CSNI/R(2017)6, 2017.
  2. T. Hohne, S. Kliem, IAEA CRP benchmark of ROCOM boron dilution and PTS test cases for the use of CFD in reactor design, in: Computational Fluid Dynamics for Nuclear Reactor Safety Applications - CFD4NRS-6, Cambridge, USA, 2016.
  3. S. Kliem, R. Franz, OECD PKL2 Project - Final Report on the ROCOM Tests, Technique Report, Helmholtz Zentrum Dresden Rossendorf (HZDR), 2012.
  4. S. Kliem, R. Franz, OECD PKL3 Project - Final Report on the ROCOM Tests, Technique Report, Helmholtz Zentrum Dresden Rossendorf (HZDR), 2016.
  5. T. Hohne, S. Kliem, U. Bieder, Modeling of a buoyancy-driven flow experiment at the ROCOM test facility using the CFD codes CFX-5 and Trio_U, Nucl. Eng. Des. 236 (2006) 1309-1325. https://doi.org/10.1016/j.nucengdes.2005.12.005
  6. T. Hohne, S. Kliem, U. Rohde, Buoyancy-driven mixing studies of natural circulation flows using Rossendorf Coolant Mixing model experiments and CFD, Chem. Ing. Tech. 83 (2011) 1282-1289. https://doi.org/10.1002/cite.201100035
  7. T. Hohne, S. Kliem, U. Bieder, IAEA CRP benchmark of ROCOM PTS test case for the use of CFD in reactor design using the CFD-Codes ANSYS CFX and TrioCFD, Nucl. Eng. Des. 333 (2018) 161-180. https://doi.org/10.1016/j.nucengdes.2018.04.017
  8. V. Petrov, A. Manera, Validation of STAR-CCM+ for bouyancy driven mixing in a PWR reactor pressure vessel, in: The 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14), 2011.
  9. S.T. Jayaraju, P. Sathiah, E.M.J. Komen, E. Baglietto, Large Eddy Simulation for an inherent boron dilution transient, Nucl. Eng. Des. 262 (2013) 484-498. https://doi.org/10.1016/j.nucengdes.2013.05.024
  10. A. Barthet, B. Gaudron, D. Alvarez, Code_Saturne integral validation on a ROCOM test, in: The 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-15), Pisa, Italy, 2013.
  11. J. Herb, CFD simulations of the PKL-ROCOM experiments with ANSYS CFX, in: The 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-15), Pisa, Italy, 2013.
  12. M. Boumaza, F. Moretti, R. Dizene, Numerical simulation of flow and mixing in ROCOM facility using uniform and non-uniform inlet flow velocity profiles, Nucl. Eng. Des. 280 (2014) 362-371. https://doi.org/10.1016/j.nucengdes.2014.10.018
  13. R. Puragliesi, O. Zerkak, A. Pautz, Assessment of CFD URANS models for buoyancy driven mixing flows based on ROCOM experiments, in: The 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-10), 2014.
  14. R. Puragliesi, O. Zerkak, A. Pautz, Assessment of OpenFOAM CFD toolbox for gravity driven mixing flows in a reactor pressure vessel, in: The 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH16), 2015.
  15. I. Farkas, E. Hutli, T. Farkas, A. Takacs, A. Guba, I. T oth, Validation of Computational Fluid Dynamics calculation using Rossendorf Coolant Mixing model flow measurements in primary loop of coolant in a pressurized water reactor model, Nucl. Eng. Technol. 48 (2016) 941-951. https://doi.org/10.1016/j.net.2016.02.017
  16. Z. Carija, F. Ledic, A. Sikirica, B. Niceno, CFD study of the PTS experiment in ROCOM test facility, Nucl. Eng. Technol. 52 (2020) 2803-2811. https://doi.org/10.1016/j.net.2020.06.002
  17. IAEA, Benchmarking of Computational Fluid Dynamics Codes for Reactor Vessel Design, IAEA TECDOC Series IAEA-TECDOC-1908, 2020.
  18. E. Coscarelli, S. Lutsanych, F. D'Auria, Thermal hydraulic system codes performance in simulating buoyancy flow mixing experiment in ROCOM test facility, in: The 22nd International Conference Nuclear Energy for New Europe (NENE-22), 2013.
  19. S.A. Bousbia, J. Vlassenbroeck, Assessment of the CATHARE 3D capabilities in predicting the temperature mixing under asymmetric buoyant driven flow conditions, Nucl. Eng. Des. 265 (2013) 469-483. https://doi.org/10.1016/j.nucengdes.2013.09.016
  20. S.A. Bousbia, J. Vlassenbroeck, Unsteady single-phase natural circulation flow mixing prediction using CATHARE three-dimensional capabilities, Nucl. Eng. Technol. 49 (2017) 466-475. https://doi.org/10.1016/j.net.2016.11.006
  21. R. Mukin, R. Puragliesi, S. Ceuca, H. Austregesilo, A. Salah, Thermal mixing assessment using 3-D thermal-hydraulic and CFD codes, in: The 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH-17), 2017.
  22. R. Puragliesi, Assessment of a URANS CFD model for gravity driven flows: a comparison with OECD/PKL2 ROCOM experiments, Nucl. Eng. Des. 356 (2020), 110365.
  23. B.J. Daly, F.H. Harlow, Transport equations in turbulence, Phys. Fluid. 13 (1970) 2634-2649. https://doi.org/10.1063/1.1692845
  24. S. Kenjeres, K. Hanjalic, Convective rolls and heat transfer in finite-length Rayleigh-Benard convection: a two-dimensional numerical study, Phys. Rev. 62 (2000) 7987-7998.
  25. S. Kenjeres, S.B. Gunarjo, K. Hanjalic, Contribution to elliptic relaxation modelling of turbulent natural and mixed convection, Int. J. Heat Fluid Flow 26 (2005) 569-586. https://doi.org/10.1016/j.ijheatfluidflow.2005.03.007
  26. B.A. Younis, Y. Jooss, S. Spring, B. Weigand, Accounting for the effects of buoyancy on the turbulent scalar fluxes, Environ. Fluid Mech. 19 (2019).
  27. H.-M. Prasser, G. Grunwald, T. Hohne, S. Kliem, U. Rohde, F.-P. Weiss, Coolant mixing in a pressurized water reactor: deboration transients, steam-line breaks, and emergency core cooling injection, Nucl. Technol. 143 (2003) 37-56. https://doi.org/10.13182/NT03-A3396
  28. H.-M. Prasser, A. Bottger, J. Zschau, A new electrode-mesh tomograph for gas-liquid flows, Flow Meas. Instrum. 9 (1998) 111-119. https://doi.org/10.1016/S0955-5986(98)00015-6
  29. J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer, 2001.
  30. F.S. Lien, W.L. Chen, M.A. Leschziner, Low-Reynolds-number eddy-viscosity modelling based on non-linear stress-strain/vorticity relations, in: Engineering Turbulence Modelling and Experiments, Elsevier, Oxford, 1996, pp. 91-100.
  31. F.R. Menter, M. Kuntz, R. Langtry, Ten years of industrial experience with the SST turbulence model, in: 4th Internal Symposium: Turbulence, Heat and Mass Transfer, 2003.
  32. T.J. Heindel, S. Ramadhyani, F.P. Incropera, Assessment of turbulence models for natural convection in an enclosure, Numer. Heat Tran., Part B: Fundamentals 26 (1994) 147-172. https://doi.org/10.1080/10407799408914923
  33. B. Devolder, P. Troch, P. Rauwoens, Performance of a buoyancy-modified k-ω and k-ω SST turbulence model for simulating wave breaking under regular waves using OpenFOAM®, Coast. Eng. 138 (2018) 49-65. https://doi.org/10.1016/j.coastaleng.2018.04.011
  34. C. Liu, W. Zhao, J. Wang, D. Wan, Improving the numerical robustness of buoyancy modified k-ω SST turbulence model, in: MARINE VIII : Proceedings of the VIII International Conference on Computational Methods in Marine Engineering, 2019.
  35. J. Li, Y. You, K. Chen, X. Zhang, Numerical computations of resonant sloshing using the modified isoAdvector method and the buoyancy-modified turbulence closure model, Appl. Ocean Res. 93 (2019), 101829.
  36. A. Malhotra, S.S. Kang, Turbulent Prandtl number in circular pipes, Int. J. Heat Mass Tran. 27 (1984) 2158-2161. https://doi.org/10.1016/0017-9310(84)90203-5
  37. CFD direct, OpenFOAM v5 user guide. https://cfd.direct/openfoam/user-guidev5/.