DOI QR코드

DOI QR Code

Experimental assessment of thermal radiation effects on containment atmospheres with varying steam content

  • R. Kapulla (Paul Scherrer Institute) ;
  • S. Paranjape (OST - Ostschweizer Fachhochschule Department Technik) ;
  • U. Doll (Paul Scherrer Institute) ;
  • E. Kirkby (Paul Scherrer Institute) ;
  • D. Paladino (Paul Scherrer Institute)
  • Received : 2022.03.07
  • Accepted : 2022.07.01
  • Published : 2022.11.25

Abstract

The thermal-hydraulics phenomena in a containment during an accident will necessarily include radiative heat transfer (i) within the gas mixture due to the high radiative absorption and emission of steam and (ii) between the gas mixture and the surrounding structures. The analysis of some previous PANDA experiments (PSI, Switzerland) demonstrated the importance of the proper modelling of radiation for the benefit of numerical simulations. These results together with dedicated scoping calculations conducted for the present experiments indicated that the radiative heat transfer is considerable, even for a very low amount of steam (≈2%). The H2P2 series conducted in the large-scale PANDA facility at the Paul-Scherrer-Institut (PSI) in the framework of the OECD/NEA HYMERES-2 project is intended to enhance the understanding of thermal radiation phenomena and to provide a benchmark for corresponding numerical simulations. Thus, the test matrix was tailored around the two opposite extremes: either gas compositions with small steam content such that radiative heat transfer phenomena can be neglected. Or gas mixtures containing larger amounts of steam, so that radiative heat transfer is expected to play a dominant role. The H2P2 series consists of 5 experiments designed to isolate the radiation phenomena from convective and diffusive effects as much as possible. One vessel with a diameter of 4 m and a height of 8 m was preconditioned with different mixtures of air / steam at room and elevated temperatures. This was followed by the build-up of a stable helium stratification at constant pressure in the upper part of the vessel. After that, helium was injected from the top into the vessel which leads to an increase of the vessel pressure and a corresponding elevation-dependent and transient rise of the gas temperature. It is shown that even the addition of small amounts of steam in the initial gas atmosphere considerably impacts the radiative heat transport throughout all phases of the experiments and markedly influences i) the monitored gas peak temperature, ii) the temperature history during the compression and iii) the following relaxation phase after the compression was stopped. These PANDA experiments are the first of its kind conducted in a large scale thermal-hydraulic facility.

Keywords

Acknowledgement

The authors would like to thank Max Fehlmann (25. May 1960; †30.11.2021) and Simon Suter for their engaged support in conducting the experiments. Without their profound knowledge of the PANDA facility and their ability to find practical technical solutions to whatever scientific perspective, it would not have been possible to obtain the results documented in this article. The authors also would like to thank the members of the Management Board and the Program Review Group of the OECD/NEA HYMERES-2 project for their help in defining the test program and evaluating the results.

References

  1. R. Kapulla, K. Manohar, S. Paranjape, D. Paladino, Self-similarity for statistical properties in low-order representations of a large-scale turbulent round jet based on the proper orthogonal decomposition, Experimental Thermal and Fluid Science (2021), 110320, http://dx.doi.org/10.1016/j.expthermflusci.2020.110320.
  2. S. Kelm, R. Kapulla, H.-J. Allelein, Erosion of a confined stratified layer by a vertical jet - detailed assessment of a CFD approach against the OECD/NEA PSI benchmark, Nuclear Engineering and Design 312 (2017) 228-238, http://dx.doi.org/10.1016/j.nucengdes.2016.09.014.
  3. S. Paranjape, R. Kapulla, G. Mignot, D. Paladino, Parametric study on density stratification erosion caused by a horizontal steam jet interacting with a vertical plate obstruction, Nuclear Engineering and Design 312 (2017) 351-360, http://dx.doi.org/10.1016/j.nucengdes.2016.12.012.
  4. D. Paladino, M. Andreani, S. Guentay, G. Mignot, R. Kapulla, S. Paranjape, M. Sharabi, A. Kisselev, T. Yudina, A. Filippov, M. Kamnev, A. Khizbullin, O. Tyurikov, Z. Liang, D. Abdo, J. Brinster, D. Dabbene, S. Kelm, M. Klauck, L. Goetz, R. Gehr, J. Malet, A. Bentaib, A. Bleye, P. Lemaitre, E. Porcheron, S. Benz, T. Jordan, Z. Xu, C. Boyd, A. Siccama, D. Visser, Outcomes from the EURATOM-ROSATOM ERCOSAM SAMARA projects on containment thermal-hydraulics for severe accident management, Nuclear Engineering and Design 308 (2016) 103-114, http://dx.doi.org/10.1016/j.nucengdes.2016.08.011.
  5. R. Kapulla, G. Mignot, S. Paranjape, L. Ryan, D. Paladino, Large Scale Gas Stratification Erosion by a Vertical Helium-Air Jet, Science and Technology of Nuclear Installations, 2014, http://dx.doi.org/10.1016/j.nucengdes.2013.02.034.
  6. NEA, Resolving Complex Safety Relevant Issues Related to Hydrogen Release in Nuclear Power Plant Containments Duringa Postulated Severe Accident - Resolving Complex Safety Relevant Issues Related to Hydrogen Release in Nuclear Power Plant Containments during a Postulated Severe Accident, Nuclear Energy Agency, 2018. Technical Report.
  7. NEA, OECD-SETH-2 Project PANDA and MISTRA Experiments - Final Summary Report e Investigation of Key Issuesfor the Simulation of Thermalhydraulic Conditions in WaterReactor Containment, Technical Report, Nuclear Energy Agency, 2012. https://www.oecd-nea.org/upload/docs/application/pdf/2021-02/csni-r2012-5.pdf.
  8. F. Liu, Z. Sun, M. Ding, H. Bian, Research progress of hydrogen behaviors in nuclear power plant containment under severe accident conditions, International Journal of Hydrogen Energy 46 (2021) 36477-36502, http://dx.doi.org/10.1016/j.ijhydene.2021.08.151.
  9. M. Andreani, D. Paladino, D. Papini, Multi-step planning calculations with the Gothic code used for the design of complex experiments in the PANDA facility, Nuclear Engineering and Design 339 (2018) 116-125, http://dx.doi.org/10.1016/j.nucengdes.2018.09.005.
  10. C. Boyd, Perspectives on CFD analysis in nuclear reactor regulation, Nuclear Engineering and Design 299 (2016) 12-17, http://dx.doi.org/10.1016/j.nucengdes.2015.08.001, cFD4NRS-5.
  11. D. Paladino, M. Andreani, R. Zboray, J. Dreier, Toward a CFD-grade database addressing LWR containment phenomena, Nuclear Engineering and Design 253 (2012) 331-342, http://dx.doi.org/10.1016/j.nucengdes.2011.08.064.
  12. B.L. Smith, A numerical investigation of three-dimensional flows in large volumes in the context of passive containment cooling in BWRs, Nuclear Engineering and Design 237 (2007) 1175-1184, http://dx.doi.org/10.1016/j.nucengdes.2007.02.001.
  13. G. Yadigaroglu, M. Andreani, J. Dreier, P. Coddington, Trends and needs in experimentation and numerical simulation for LWR safety, Nuclear Engineering and Design 221 (2003) 205-223, http://dx.doi.org/10.1016/S0029-5493(02)00339-4.
  14. L. Wang, B. Yan, The scaling technology in nuclear reactor thermal hydraulic, Annals of Nuclear Energy 161 (2021), 108440, http://dx.doi.org/10.1016/j.anucene.2021.108440.
  15. I. Gallego-Marcos, P. Kudinov, W. Villanueva, R. Kapulla, S. Paranjape, D. Paladino, Jani, M. Puustinen, A. Ras€ anen, L. Pyy, E. Kotro, Pool stratification and mixing induced by steam injection through spargers: CFD modelling of the PPOOLEX and PANDA experiments, Nuclear Engineering and Design 347 (2019) 67-85, http://dx.doi.org/10.1016/j.nucengdes.2019.03.011.
  16. I. Gallego-Marcos, P. Kudinov, W. Villanueva, R. Kapulla, S. Paranjape, D. Paladino, Jani, M. Puustinen, A. Rasanen, L. Pyy, E. Kotro, Pool stratification and mixing induced by steam injection through spargers: analysis of the PPOOLEX and PANDA experiments, Nuclear Engineering and Design 337 (2018) 300-316, http://dx.doi.org/10.1016/j.nucengdes.2018.07.004.
  17. A. Filippov, S. Grigoryev, N. Drobyshevsky, A. Kiselev, A. Shyukin, T. Yudina, CMD simulation of ERCOSAM PANDA spray tests PE1 and PE2, Nuclear Engineering and Design 299 (2016) 81-94, http://dx.doi.org/10.1016/j.nucengdes.2015.10.013.
  18. R. Krpan, I. Tiselj, I. Kljenak, Simulations of PANDA and SPARC experiments on containment atmosphere mixing caused by vertical gas injection, Nuclear Engineering and Design 384 (2021), 111464, http://dx.doi.org/10.1016/j.nucengdes.2021.111464.
  19. L. Tong, D. Guo, D. Wang, X. Cao, Improvements of turbulence model for analysis of hydrogen stratification erosion by turbulent buoyant jet, Annals of Nuclear Energy 150 (2021), 107797, http://dx.doi.org/10.1016/j.anucene.2020.107797.
  20. M. Andreani, A.J. Gaikwad, S. Ganju, B. Gera, S. Grigoryev, L.E. Herranz, R. Huhtanen, V. Kale, A. Kanaev, R. Kapulla, S. Kelm, J. Kim, T. Nishimura, D. Paladino, S. Paranjape, B. Schramm, M. Sharabi, F. Shen, B. Wei, D. Yan, R. Zhang, Synthesis of a CFD benchmark exercise based on a test in the PANDA facility addressing the stratification erosion by a vertical jet in presence of a flow obstruction, Nuclear Engineering and Design 354 (2019), 110177, http://dx.doi.org/10.1016/j.nucengdes.2019.110177.
  21. F.S. Sarikurt, Y.A. Hassan, Large eddy simulations of erosion of a stratified layer by a buoyant jet, International Journal of Heat and Mass Transfer 112 (2017) 354-365, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.134.
  22. M.K. Fernandez-Cosials, G. Jimenez, E. Lopez-Alonso, Analysis of a gas stratification break-up by a vertical jet using the Gothic code, Nuclear Engineering and Design 297 (2016) 123-135, http://dx.doi.org/10.1016/j.nucengdes.2015.11.035.
  23. S. Abe, M. Ishigaki, Y. Sibamoto, T. Yonomoto, RANS analyses on erosion behavior of density stratification consisted of helium e air mixture gas by a low momentum vertical buoyant jet in the PANDA test facility, the third international benchmark exercise (IBE-3), Nuclear Engineering and Design 289 (2015) 231-239, http://dx.doi.org/10.1016/j.nucengdes.2015.04.002.
  24. L. Ishay, G. Ziskind, U. Bieder, A. Rashkovan, Nuclear Reactor Containment e Modelling of Stably Stratified Layer Ersosion by a Turbuelnt Jet, NURETH-16, Chicago, IL, 2015. August 30-September 4.
  25. S. Guo, J. Cai, H. Zhang, H. Yin, X. Yang, Study of the distribution of steam plumes in the PANDA facility using CFD code, Nuclear Engineering and Design 289 (2015) 81-91, http://dx.doi.org/10.1016/j.nucengdes.2015.04.016.
  26. L. Vyskocil, J. Schmid, J. Macek, CFD simulation of air e steam flow with condensation, Nuclear Engineering and Design 279 (2014) 147-157, http://dx.doi.org/10.1016/j.nucengdes.2014.02.014, sI : CFD4NRS-4.
  27. M. Andreani, D. Paladino, T. George, On the unexpectadly large effect of the re-evaporation of the condensate liquid film in two tests in the PANDA facility revealed by simulations with the GOTHIC code, CFD4NRS, Grenoble, France (2008), 10-12 September, 2008.
  28. M. Andreani, D. Paladino, Simulation of gas mixing and transport in a multi-compartment geometry using the Gothic containment code and relatively coarse meshes, Nuclear Engineering and Design 240 (2010) 1506-1527, http://dx.doi.org/10.1016/j.nucengdes.2010.02.020.
  29. M. Andreani, A. Badillo, R. Kapulla, Synthesis of the OECD/NEA-PSI CFD benchmark exercise, Nuclear Engineering and Design 299 (2016) 59-80, http://dx.doi.org/10.1016/j.nucengdes.2015.12.029, CFD4NRS-5.
  30. J. Yang, S.-W. Choi, J. Lim, D.-Y. Lee, S. Rassame, T. Hibiki, M. Ishii, Counterpart experimental study of ISP-42 PANDA tests on PUMA facility, Nuclear Engineering and Design 258 (2013) 249-257, http://dx.doi.org/10.1016/j.nucengdes.2013.02.034.
  31. M. Andreani, K. Haller, M. Heitsch, B. Hemstrom, I. Karppinen, J. Macek, € J. Schmid, H. Paillere, I. Toth, A benchmark exercise on the use of CFD codes for containment issues using best practice guidelines: a computational challenge, Nuclear Engineering and Design 238 (2008) 502-513, http://dx.doi.org/10.1016/j.nucengdes.2007.01.021.
  32. M. Andreani, Pretest calculations of phase A of ISP-42 (PANDA) using the GOTHIC containment code and comparison with the experimental results, Nuclear Technology 148 (2004) 35-47, http://dx.doi.org/10.13182/NT04-A3546.
  33. D. Visser, N. Siccama, S. Jayaraju, E. Komen, Application of a CFD based containment model to different large-scale hydrogen distribution experiments, Nuclear Engineering and Design 278 (2014) 491-502, http://dx.doi.org/10.1016/j.nucengdes.2014.08.005.
  34. D. Bestion, A State-Of-The-Art Report on Scaling in System Thermal-Hydraulics Applications to Nuclear Reactor Safety and Design, Technical Report R, NEA/CSNI, 2016, 14.
  35. ERCOSAM, Containment Thermal-Hydraulics of Current and Future LWRs for Severe Accident Management, Funded under: FP7-EURATOM-FISSION (2014) Grant agreement ID: 249691.
  36. N. Fujisawa, S. Liu, T. Yamagata, Numerical study on ignition and failure mechanisms of hydrogen explosion accident in Fukushima Daiichi Unit 1, Engineering Failure 124 (2021), 105388, http://dx.doi.org/10.1016/j.engfailanal.2021.105388.
  37. X. Liu, S. Kelm, M. Kampili, G.V. Kumar, H.-J. Allelein, Monte Carlo method with SNBCK nongray gas model for thermal radiation in containment flows, Nuclear Engineering and Design 390 (2022), 111689, http://dx.doi.org/10.1016/j.nucengdes.2022.111689.
  38. R. Kapulla, S. Paranjape, M. Fehlmann, S. Suter, U. Doll, D. Paladino, The effects of activated cooler power on the transient pressure decay and helium mixing in the PANDA facility, Nuclear Engineering and Technology 54 (6) (2022) 2311-2320, http://dx.doi.org/10.1016/j.net.2021.12.032.
  39. A. Dehbi, S. Kelm, J. Kalilainen, H. Mueller, The influence of thermal radiation on the free convection inside enclosures, Nuclear Engineering and Design 341 (2019) 176-185, http://dx.doi.org/10.1016/j.nucengdes.2018.10.025.
  40. Y. Li, H. Zhang, J. Xiao, J. Travis, T. Jordan, Numerical investigation of natural convection inside the containment with recovering passive containment cooling system using gasflow-mpi, Annals of Nuclear Energy 114 (2018) 1-10, http://dx.doi.org/10.1016/j.anucene.2017.11.047.
  41. S. Kelm, H.-J.H. Muller, Allelein, Importance of thermal radiation heat transfermodeling in containment typical flows, in: Proc. CFD4NRS-6, , Boston, Massachusetts, USA, 2016. September 13-15, 2016.
  42. F. Dabbene, J. Brinster, D. Abdo, E. Porcheron, P. Lemaitre, G. Mignot, R. Kapulla, S. Paranjape, M. Kamnev, A. Khizbullin, Experimental activities on stratification and mixing of a gas mixture under the conditions of a severe accident with intervention of mitigating measures performed in the ERCOSAM-SAMARA project, in: ICAPP 2015 - InternationalCongress on Advances in Nuclear Power Plants, 2015. May 2015, Nice, France.
  43. A.S. Filippov, S.Y. Grigoryev, O. Tarasov, On the possible role of thermal radiation in containment thermal experiments by the example of CFD analyses of TOSQAN T114 Air-He test, Nuclear Engineering and Design 310 (2016) 175e186, http://dx.doi.org/10.1016/j.nucengdes.2016.10.003.
  44. X. Liu, S. Kelm, M. Kampili, H.-J. Allelein, R. Kapulla, D. Paladino, S. Paranjape, Validation of a finite volume Monte Carlo solver for non-gray gas radiation in containemnt flows, in: 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), 2022.
  45. M. Andreani, R. Kapulla, S. Kelm, D. Paladino, S. Paranjape, Analyses of gas stratification erosion by a vertical jet in presence of an obstacle using the GOTHIC code, Journal of Nuclear Engineering and Radiation Science 6 (2020), 021110, http://dx.doi.org/10.1115/1.4046296.
  46. S. Paranjape, R. Kapulla, M. Fehlmann, S. Suter, W. Bissels, D. Paladino, OECDNEA/HYMERES-2 Project: PANDA Test Facility Description and Geometrical Specifications, Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland, 2018. Technical Report TM-41-18-02, Rev-0, HYMERES-2-18-02.