DOI QR코드

DOI QR Code

Thermal study of a scanning beam in granular flow target

  • Ping Lin (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Yuanshuai Qin (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Changwei Hao (Advanced Energy Science and Technology Guangdong Laboratory) ;
  • Yuan Tian (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Jiangfeng Wan (East China University of Technology) ;
  • Huan Jia (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Lei Yang (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Wenshan Duan (College of Physics and Electronic Engineering, Northwest Normal University) ;
  • Han-Jie Cai (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Sheng Zhang (Advanced Energy Science and Technology Guangdong Laboratory)
  • Received : 2022.03.23
  • Accepted : 2022.06.11
  • Published : 2022.11.25

Abstract

The concept of dense granular-flow target (DGT) for the China Initiative Accelerator Driven Subcritical system (CiADS) is an attractive choice for high heat removal ability, low chemical toxicity, and radiotoxicity. A wobbling hollow beam is proposed to enhance the homogeneity of temperature rise of flowing particles in beam-target coupling zone. In this paper, the design procedure of target and beam parameters was discussed firstly. Then we simulated the heat deposition and transfer of the scanning beam in DGT to study the effect of beam parameters. The results show the flux density of proton beam plays a crucial role in the distribution of temperature rise while the contributions from scanning frequency heat transfer are also obvious. Moreover, heat transfer in transversal directions is insignificant, resulting in a low heat flux towards the sidewalls of DGT. This work not only contributes to the design of DGT, but also beneficial for understanding the beam-target coupling in porous materials.

Keywords

Acknowledgement

The authors would like to thank the Supercomputing Center of IMPCAS, especially the fellows Qiong Yang and Jizheng Duan for the supercomputing support.

References

  1. K. Furukawa, et al., The Combined System of Accelerator Molten-Salt Breeder (AMSB) and Molten-Salt Converter Reactor (MSCR), Japan-US Seminar on Thorium Fuel Reactors (October 1982, Nara, Japan), Thorium Fuel Reactors. Atomic Energy Society of Japan, 1985, pp. 271-281. 
  2. C. Bowman, et al., Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 320 (1) (1992) 336-367.  https://doi.org/10.1016/0168-9002(92)90795-6
  3. F. Carminati, et al., An Energy Amplifier for Cleaner and Inexhaustible Nuclear Energy Production Driven by a Particle Beam Accelerator, 1993, P00019698. 
  4. H. Nifenecker, et al., Basics of accelerator driven subcritical reactors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 463 (3) (2001) 428-467.  https://doi.org/10.1016/S0168-9002(01)00160-7
  5. G.S. Bauer, Overview on spallation target design concepts and related materials issues, J. Nucl. Mater. 398 (1-3) (2010) 19-27.  https://doi.org/10.1016/j.jnucmat.2009.10.005
  6. S. Fu, et al., Status of CSNS Project, IPAC, 2013. 
  7. W. Wagner, Target development for the SINQ high-power neutron spallation source, in: HIGH INTENSITY and HIGH BRIGHTNESS HADRON BEAMS: 20th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams ICFA-HB2002, AIP Publishing, 2002. 
  8. G.S. Bauer, M. Salvatores, G. Heusener, MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target, J. Nucl. Mater. 296 (2001) 17-33.  https://doi.org/10.1016/S0022-3115(01)00561-X
  9. T.A. Gabriel, J.R. Haines, T.J. McManamy, Overview of the spallation neutron source (SNS) with emphasis on target systems, J. Nucl. Mater. 318 (2003) 1-13.  https://doi.org/10.1016/S0022-3115(03)00010-2
  10. T. Naoe, et al., Damage inspection of the first mercury target vessel of JSNS, J. Nucl. Mater. 450 (1-3) (2014) 123-129.  https://doi.org/10.1016/j.jnucmat.2013.04.049
  11. C. Fazio, et al., The MEGAPIE-TEST project: supporting research and lessons learned in first-of-a-kind spallation target technology, Nucl. Eng. Des. 238 (6) (2008) 1471-1495.  https://doi.org/10.1016/j.nucengdes.2007.11.006
  12. W. Wagner, et al., MEGAPIE at SINQ - the first liquid metal target driven by a megawatt class proton beam, J. Nucl. Mater. 377 (1) (2008) 12-16.  https://doi.org/10.1016/j.jnucmat.2008.02.057
  13. J. Mach, et al., Fatigue analysis of the spallation neutron source 2 MW target design, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1010 (2021), 165481. 
  14. T. Wakui, et al., New design of high power mercury target vessel of J-PARC, in: Materials Science Forum, Trans Tech Publ, 2021. 
  15. Y. Gohar, et al., Lead-bismuth Target Design for the Subcritical Multiplier (SCM) of the Accelerator Driven Test Facility (ADTF), Argonne National Lab., IL (US), 2002. 
  16. C.H. Cho, T.Y. Song, N.I. Tak, Numerical design of a 20 MW lead-bismuth spallation target for an accelerator-driven system, Nucl. Eng. Des. 229 (2-3) (2004) 317-327.  https://doi.org/10.1016/j.nucengdes.2004.01.002
  17. P. Schuurmans, et al., Design and Supporting R&D of the XT-ADS Spallation Target, 2007, p. 531. 
  18. H.A. Abderrahim, et al., in: MYRRHA, a multipurpose hybrid research reactor for high-end applications 20, 2010, pp. 24-28, 1. 
  19. J. Engelen, et al., MYRRHA: preliminary front-end engineering design, Int. J. Hydrogen Energy 40 (44) (2015) 15137-15147.  https://doi.org/10.1016/j.ijhydene.2015.03.096
  20. S. Keijers, et al., Design of the MYRRHA Spallation Target Assembly, 2015. 
  21. L. Yang, W.L. Zhan, New concept for ADS spallation target: gravity-driven dense granular flow target, Sci. China Technol. Sci. 58 (10) (2015) 1705-1711.  https://doi.org/10.1007/s11431-015-5894-0
  22. C. Densham, et al., The potential of fluidised powder target technology in high power accelerator facilities, in: Proc. 2009 Part, Accel. Conf., Vancouver, Canada), 2009, WE1GRC04. 
  23. O. Caretta, et al., Preliminary experiments on a fluidised powder target, in: Proceedings of EPAC, 2008. 
  24. O. Caretta, et al., Response of a tungsten powder target to an incident high energy proton beam, Phys. Rev. Spec. Top. Accel. Beams 17 (10) (2014). 
  25. T.W. Davies, et al., The production and anatomy of a tungsten powder jet, Powder Technol. 201 (3) (2010) 296-300.  https://doi.org/10.1016/j.powtec.2010.03.018
  26. H.-J. Cai, et al., New target solution for a muon collider or a muon-decay neutrino beam facility: the granular waterfall target, Phys. Rev. Accelerat. Beams 20 (2) (2017), 023401. 
  27. L. Hu, et al., Numerical study on cooling characteristics in granular and liquid spallation targets, Nucl. Eng. Des. 322 (2017) 474-484.  https://doi.org/10.1016/j.nucengdes.2017.07.027
  28. T. Davenne, et al., Observed proton beam induced disruption of a tungsten powder sample at CERN, Phys. Rev. Accelerat. Beams 21 (7) (2018) 14. 
  29. Y.S. Qin, et al., Transfer line including vacuum differential system for a high-power windowless target, Phys. Rev. Accelerat. Beams 23 (11) (2020) 10. 
  30. H. Azizakram, et al., Investigation of the thermal performance of Te-nat target for I-124 production in the RARS cyclotron, Kerntechnik 82 (6) (2017) 662-667.  https://doi.org/10.3139/124.110835
  31. M. Sadeghi, C. Tenreiro, P.V.D. Winkel, Study of heat transfer parameters on rhodium target for 103Pd production, Nukleonika -Original Edition- 54 (3) (2009) 169-173. 
  32. Malihe, et al., Investigation of the thermal performance of natCu target for 63Zn production, in: Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, 2018. 
  33. J.J. Barker, Heat transfer in packed beds, Ind. Eng. Chem. 57 (4) (1965) 43-&. 
  34. E. Schluender, Heat transfer to packed and stirred beds from the surface of immersed bodies, Chem. Eng. Process: Process Intensif. 18 (1) (1984) 31-53.  https://doi.org/10.1016/0255-2701(84)85007-2
  35. W. van Antwerpen, C.G. du Toit, P.G. Rousseau, A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles, Nucl. Eng. Des. 240 (7) (2010) 1803-1818.  https://doi.org/10.1016/j.nucengdes.2010.03.009
  36. W.L. Vargas, J.J. McCarthy, Heat conduction in granular materials, AIChE J. 47 (5) (2001) 1052-1059.  https://doi.org/10.1002/aic.690470511
  37. H.S. Mickley, D.F. Fairbanks, Mechanism of heat transfer to fluidized beds, AIChE J. 1 (3) (1955) 374-384.  https://doi.org/10.1002/aic.690010317
  38. W.N. Sullivan, R.H. Sabersky, Heat-transfer to flowing granular media, Int. J. Heat Mass Tran. 18 (1) (1975) 97-107.  https://doi.org/10.1016/0017-9310(75)90012-5
  39. J.K. Spelt, C.E. Brennen, R.H. Sabersky, Heat-transfer to flowing granular material, Int. J. Heat Mass Tran. 25 (6) (1982) 791-796.  https://doi.org/10.1016/0017-9310(82)90091-6
  40. T. Forgber, S. Radl, Heat transfer rates in wall bounded shear flows near the jamming point accompanied by fluid-particle heat exchange, Powder Technol. 315 (2017) 182-193.  https://doi.org/10.1016/j.powtec.2017.03.049
  41. P. Rognon, et al., A scaling law for heat conductivity in sheared granular materials, EPL 89 (5) (2010). 
  42. O. Caretta, et al., Proton beam induced dynamics of tungsten granules, Phys. Rev. Accelerat. Beams 21 (3) (2018). 
  43. J.-F. Wan, et al., Influence of geometrical and material parameters on flow rate in simplified ADS dense granular-flow target: a preliminary study, J. Nucl. Sci. Technol. (2016) 1-7. 
  44. P. Yi, et al., Influence of an Inserted Bar on the Flow Regimes in the Hopper, Chinese Physics B, 2020. 
  45. X. Li, et al., Preliminary research on flow rate and free surface of the accelerator driven subcritical system gravity-driven dense granular-flow target, PLoS One 12 (11) (2017) e0187435. 
  46. Q. Zhao, et al., Energy deposition and neutron flux study in a gravity-driven dense granular target (DGT) with GEANT4 toolkit, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 427 (2018) 63-69.  https://doi.org/10.1016/j.nimb.2018.04.045
  47. L. Zhao, et al., Numerical analysis and experimental study of the magnetic lifting device prototype, High Power Laser Part Beams 27 (2015). 
  48. R. Han, et al., Neutron transport and benchmark on granular tungsten samples with 14.8 MeV neutrons, Fusion Eng. Des. 135 (2018) 116-120.  https://doi.org/10.1016/j.fusengdes.2018.07.023
  49. X. Zhang, et al., The optimization on neutronic performance of the granular spallation target by using low-density porous tungsten, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 916 (2018) 22-31.  https://doi.org/10.1016/j.nima.2018.08.071
  50. Y.L. Zhang, et al., Neutronics performance and activation calculation of dense tungsten granular target for China-ADS, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 410 (2017) 88-101.  https://doi.org/10.1016/j.nimb.2017.08.003
  51. L. Pang, et al., Study on collective friction and wear behavior of W-Ni-Fe alloy balls, Tribol. Int. 164 (2021), 107232. 
  52. K. Chen, Y.W. Yang, Y.C. Gao, Thermal Analysis for the Dense Granular Target of CIADS, Science and Technology of Nuclear Installations, 2016. 
  53. R.H. Chen, et al., Numerical analysis of the granular flow and heat transfer in the ADS granular spallation target, Nucl. Eng. Des. 330 (2018) 59-71.  https://doi.org/10.1016/j.nucengdes.2018.01.019
  54. Q. Zhao, et al., Numerical study on the inner temperature measurement for the target in CiADS, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 432 (2018) 37-41.  https://doi.org/10.1016/j.nimb.2018.07.017
  55. J.Y. Li, et al., Genetic based temperature control of the dense granular spallation target in China initiative accelerator driven system, Ann. Nucl. Energy (2021) 154, algorithm. 
  56. W. Cui, et al., Overtemperature protection systems for spallation target in China initiative accelerator driven sub-critical system, Ann. Nucl. Energy 128 (2019) 358-365.  https://doi.org/10.1016/j.anucene.2019.01.028
  57. L. Ma, et al., Validation of the idea of granular flow target: a beam coupling test, Nucl. Eng. Des. 330 (2018) 289-296.  https://doi.org/10.1016/j.nucengdes.2017.12.023
  58. P. Lin, et al., Numerical study of free-fall arches in hopper flows, Phys. Stat. Mech. Appl. 417 (2015) 29-40.  https://doi.org/10.1016/j.physa.2014.09.032
  59. J.F. Wan, et al., The influence of orifice shape on the flow rate: a DEM and experimental research in 3D hopper granular flows, Powder Technol. 335 (2018) 147-155.  https://doi.org/10.1016/j.powtec.2018.03.041
  60. Y. Tian, et al., Implementing discrete element method for large-scale simulation of particles on multiple GPUs, Comput. Chem. Eng. 104 (2017) 231-240.  https://doi.org/10.1016/j.compchemeng.2017.04.019
  61. K.L. Johnson, Contact Mechanics, cambridge university press, London, 1987. 
  62. P.A. Cundall, O.D.L. Strack, A discrete numerical-model for granular assemblies - reply, Geotechnique 30 (3) (1980) 335-336. 
  63. P. Lin, et al., Simulation of heat transfer in granular systems with DEM on GPUs, in: X. Li, Y. Feng, G. Mustoe (Eds.), Proceedings of the 7th International Conference on Discrete Element Methods, Springer Singapore, Singapore, 2017, pp. 1389-1397. 
  64. J.R. Howell, R. Siegel, M.P. Menguc, Thermal Radiation Heat Transfer, fifth ed., CRC Press. xxx, Boca Raton, 2011, p. 957. 
  65. R.M. Nedderman, et al., The flow of granular-materials .1. Discharge rates from hoppers, Chem. Eng. Sci. 37 (11) (1982) 1597-1609.  https://doi.org/10.1016/0009-2509(82)80029-8
  66. G.J. Weir, A mathematical model for dilating, non-cohesive granular flows in steep-walled hoppers, Chem. Eng. Sci. 59 (1) (2004) 149-161.  https://doi.org/10.1016/j.ces.2003.09.031
  67. W.T. Chu, B.A. Ludewigt, T.R. Renner, Instrumentation for treatment of cancer using proton and light-ion beams, Rev. Sci. Instrum. 64 (8) (1993) 2055-2122.  https://doi.org/10.1063/1.1143946
  68. T. Haberer, et al., Magnetic scanning system for heavy-ion therapy, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 330 (1-2) (1993) 296-305.  https://doi.org/10.1016/0168-9002(93)91335-K
  69. E. Pedroni, et al., The 200-MEV proton therapy project at the Paul-SCHERRER-INSTITUTE - conceptual design and practical realization, Med. Phys. 22 (1) (1995) 37-53.  https://doi.org/10.1118/1.597522
  70. T.R. Renner, W.T. Chu, Wobbler facility for biomedical experiments, Med. Phys. 14 (5) (1987) 825-834.  https://doi.org/10.1118/1.596009
  71. Y.K. Batygin, V.V. Kushin, S.V. Plotnikov, Uniform target irradiation by circular beam sweeping, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 363 (1-2) (1995) 128-130.  https://doi.org/10.1016/0168-9002(95)00258-8
  72. A.I. Ogoyski, S. Kawata, P.H. Popov, Code OK3-An upgraded version of OK2 with beam wobbling function, Comput. Phys. Commun. 181 (7) (2010) 1332-1333.  https://doi.org/10.1016/j.cpc.2010.03.016
  73. H. Saugnac, HIGH ENERGY BEAM LINE DESIGN OF THE 600 MeV , 4 mA PROTON LINAC FOR THE MYRRHA FACILITY, in: Proc. 2nd IPAC Conf., 2011 (San Sebastian, Spain). 
  74. M. Fukuda, S. Okumura, K. Arakawa, Simulation of spiral beam scanning for uniform irradiation on a large target, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 396 (1-2) (1997) 45-49.  https://doi.org/10.1016/S0168-9002(97)00740-7
  75. Y.K. Batygin, E.J. Pitcher, Advancement of LANSCE accelerator facility as a 1-MW fusion prototypic neutron source, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. (2020) 960. 
  76. Y. Tian, et al., A fast and accurate GPU based method on simulating energy deposition for beam-target coupling with granular materials, Comput. Phys. Commun. 269 (2021), 108104. 
  77. C. Hao, et al., Optimizing the GPU based method calculating energy deposition of beams coupling with discrete materials in dynamical and thermal simulations for higher computing efficiency, Comput. Phys. Commun. (2022), 108426. 
  78. H.-J. Cai, et al., Code development and target station design for Chinese accelerator-driven system project, Nucl. Sci. Eng. 183 (1) (2016) 107-115.  https://doi.org/10.13182/NSE15-59
  79. R.M. Nedderman, U. Tuzun, Kinematic model for the flow of granular-materials, Powder Technol. 22 (2) (1979) 243-253.  https://doi.org/10.1016/0032-5910(79)80030-3
  80. D. Ganta, et al., Optical method for measuring thermal accommodation coefficients using a whispering-gallery microresonator, J. Chem. Phys. 135 (8) (2011), 084313. 
  81. J. Choi, et al., Diffusion and mixing in gravity-driven dense granular flows, Phys. Rev. Lett. 92 (17) (2004). 
  82. C.H. Rycroft, et al., Analysis of granular flow in a pebble-bed nuclear reactor, Phys. Rev. 74 (2) (2006). 
  83. R. Arevalo, A. Garcimartin, D. Maza, Anomalous diffusion in silo drainage, European Phys. J. E 23 (2) (2007) 191-198. https://doi.org/10.1140/epje/i2006-10174-1