Acknowledgement
The authors would like to thank J. Shaw (Ontario Tech University) for insight about fuel bundle design and CANDU operation and F. Abbasian (Stern Labs) for input on fuel bundle meshing strategies. High-Performance Computing resources provided by Compute Canada are greatly appreciated. This research was undertaken, in part, thanks to funding from the Canada Research Chairs program (950-231328) of the Natural Sciences and Engineering Research Council of Canada.
References
- A. Catana, I. Prisecaru, D. Dupleac, N. Danila, CFD Thermal-hydraulic analysis of a CANDU fuel channel, in: Nuclear 2009 International Conference on Sustainable Development through Nuclear Research and Education Institute for Nuclear Research, 2009 (Pitesi, Romania).
- F. Abbasian, G.I. Hadaller, R.A. Fortman, Single-phase and two-phase CFD simulations of the coolant flow inside a Bruce/Darlington CANDU flow channel, in: NURETH-16 Conference, 2015. Chicago, US.
- M.H.A. Piro, F. Wassermann, S. Grundmann, B. Tensuda, S.J. Kim, M. Christon, M. Berndt, M. Nishimura, C. Tropea, Fluid flow investigations within a 37 element CANDU fuel bundle supported by magnetic resonance velocimetry and computational fluid dynamics, Int. J. Heat Fluid Flow 66 (2017) 27-42. https://doi.org/10.1016/j.ijheatfluidflow.2017.04.010
- M. Bruschewski, M.H.A. Piro, C. Tropea, S. Grundmann, Fluid flow in a diametrally expanded CANDU fuel channel - Part 1: experimental study, Nucl. Eng. Des. 357 (2020) 110-371.
- M.H.A. Piro, M. Christon, B. Tensuda, M. Poschmann, M. Bruschewski, S. Grundmann, C. Tropea, Fluid flow in a diametrally expanded CANDU fuel channel - part 2: computational study, Nucl. Eng. Des. 357 (2020) 110-121.
- M.H.A. Piro, F. Wassermann, S. Grundmann, B.W. Leitch, C. Tropea, Progress in on-going experimental and computational fluid dynamic investigations within a CANDU fuel channel, Nucl. Eng. Des. 299 (2016) 184-200. https://doi.org/10.1016/j.nucengdes.2015.07.009
- ANSYS Inc., 2019R2. ANSYS Meshing User's Guide. ANSYS Inc. Canonsburg, PA, US.
- M.A. Christon, The Hydra tool kit computational fluid dynamic theory manual, Comput. Sci. Int. (2017).
- ANSYS Inc., 2019R2. ANSYS Fluent Theory Guild. ANSYS Inc. Canonsburg, PA, US.
- J. Armstrong, T. Daniels, J. Montin, Post-irradiation Examination of the 37M Fuel Bundle at Chalk River Laboratories (AECL), 12th International Conference on CANDU Fuel, Kingston, Ontario, CA, 2013.
- R.D. Page, Nuclear Power Symposium: CANADIAN REACTOR FUEL, Atomic energy of Canada limited, 1972, pp. 6-9, 1972.
- SIEMENS Documentation - NX12 [Online]. Available: https://docs.plm. automation.siemens.com/tdoc/nx/12/nx_help/#uid:index.
- J. Frohlich, D. Von Terzi, Hybrid LES/RANS methods for the simulation of turbulent flows, Prog. Aero. Sci. 44 (5) (2008) 349-377. https://doi.org/10.1016/j.paerosci.2008.05.001
- V. Yakhot, A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Phys. Fluid. Fluid Dynam. 4 (7) (1992).
- G.I. Taylor, Statistical theory of turbulence, Proc. Roy. Soc. Lond. Math. Phys. Sci. 151 (873) (1935) 421-444.
- P.G. Hill, R.D. MacMillan, V. Lee, Tables of Thermodynamic Properties of Heavy Water in S.I. Units, Datasheet AECL 7531, 1981.
- Nuclear Energy Agency, Organisation for Economic Co-operation and Development, Best Practice Guidelines for the Use of CFD in Nuclear Reactor Safety Application - Revision, NEA/CSNI/R(2014), 2015, p. 11. Document No.
- M. Bruschewski, K. John, C. Wiistenhagen, M. Rehm, H. Hadzic, P. Pohl, S. Grundmann, Commissioning of an MRI test facility for CFD-grade flow experiments in replicas of nuclear fuel assemblies and other reactor components, Nucl. Eng. Des. 375 (2021) 111080.