DOI QR코드

DOI QR Code

137Cs, 40K and 210Po in abiotic components of aquatic ecosystems two rivers in the Can Gio biosphere reserve, Vietnam

  • Ilya G. Sidorov (A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS) ;
  • Nataliya N. Tereshchenko (A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS) ;
  • Andrey A. Korotkov (A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS) ;
  • Olga D. Chuzhikova-Proskurnina (A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS) ;
  • Nguyen Trong Hiep (Vietnam-Russia Tropical Center Southern Branch No 3) ;
  • Aleksandr V. Trapeznikov (Institute of Plant and Animal Ecology of RAS)
  • Received : 2022.04.12
  • Accepted : 2022.07.04
  • Published : 2022.11.25

Abstract

Determination of 137Cs, 40K and 210Po in water, bottom sediments and suspended matter of river systems of the Can Gio Biosphere Reserve, Vietnam was carried out. The average activity concentration of 137Cs in waters of Ca Gau and Long Tau was 0.89 ± 0.14 and 1.08 ± 0.15 Bq m-3 and was comparable to the levels of this radioisotope in waters of the East Sea. The activity concentration of 137Cs in bottom sediments was 2.23 ± 0.81 and 3.63 ± 1.24 Bq kg-1. The activity concentration of 137Cs in water and bottom sediments could be characterized as low. So, the water areas of the Ca Gau and Long Tau rivers could be attributed to areas with insignificant pollution by technogenic radionuclides. The 210Po activity concentration in bottom sediments of the Ca Gau and Long Tau rivers ranged from 9.2 ± 1.2 to 25.5 ± 2.1 Bq kg-1, which is typical for river bottom sediments. Such values indicate the absence of anthropogenic enhancement of the entry of this radionuclide into the Can Gio river systems. The 40K activity concentration varied within 467 ± 42-651 ± 39 Bq kg-1 and represented typical values of potassium content in the bottom sediments of coastal water bodies, subject to a significant influence of the lithogenic component of suspended matter.

Keywords

Acknowledgement

We are grateful to the Vietnam-Russia Tropical Center for the opportunity to take part in the research, as well as to the head of the Laboratory of Environmental Analysis of the Vietnam-Russia Tropical Center Southern Branch Nguyen Trong Hiep and his employees for their help in taking and processing samples. This study was conducted according to the topic of research work Vietnam-Russia Tropical Center "Ecolan E-3.4" and the topic of the governmental assignment to the A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, "Molismological and biogeochemical fundamentals of marine ecosystems homeostasis" state registry no. 121031500515-8.

References

  1. International Atomic Energy Agency, Radiometrics Laboratory, Worldwide Marine Radioactivity Studies (WOMARS): Radionuclide Levels in Oceans and Seas: Final Report of a Coordinated Research Project, IAEA, Vienna, 2005, p. 187. 
  2. N.Q. Long, Y. Truong, P.D. Hien, N.T. Binh, L.N. Sieu, T.V. Giap, N.T. Phan, Atmospheric radionuclides from the Fukushima Dai-ichi nuclear reactor accident observed in Vietnam, J. Environ. Radioact. 111 (2012) 53-58, https://doi.org/10.1016/j.jenvrad.2011.11.018. 
  3. T.T. Hung, T.A. Tu, D.T. Huyen, M. Desmet, Presence of trace elements in sediment of Can Gio mangrove forest, Ho Chi Minh city, Vietnam, VIETNAM, J. EARTH Sci. 41 (2019) 21-35, https://doi.org/10.15625/0866-7187/41/1/13543. 
  4. V.N. Nam, L.V. Sinh, T. Miyagi, S. Baba, H.T. Chan, An overview of can Gio district and mangrove biosphere reserve, Stud. Can Gio mangrove biosphere reserve Ho Chi Minh city Vietnam mangrove ecosyst, Tech. Rep. 6 (2014) 1-7. 
  5. Studies in Can Gio Mangrove Biosphere Reserve, Ho Chi Minh City, Viet Nam, Mangrove Ecosystems Technical Reports Volume 6, Tohoku Gakuin University, Can Gio Mangrove Protection Forest Management Board, International Society for Mangrove Ecosystems (ISME), Tohoku, Japan, 2014. 
  6. T.T. Hung, D.T. Huyen, T.A. Tu, B.T. Vinh, Dating core sediment by applying the 210Pb method and verifying by residual of dioxin (during the Vietnam war) in Can Gio biosphere reserve, Environ. Earth Sci. 80 (2021) 544, https://doi.org/10.1007/s12665-021-09827-9. 
  7. K.K. Turekian, K.H. Wedepohl, Distribution of the elements in some major units of the earth's crust, GSA Bull. 72 (1961) 175-192, https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2. 
  8. A. Aarkrog, M.S. Baxter, A.O. Bettencourt, R. Bojanowski, A. Bologa, S. Charmasson, I. Cunha, R. Delfanti, E. Duran, E. Holm, A comparison of doses from 137Cs and 210Po in marine food: a major international study, J. Environ. Radioact. 34 (1997) 69-90.  https://doi.org/10.1016/0265-931X(96)00005-7
  9. B.D. Amiro, Radiological dose conversion factors for generic non-human biota used for screening potential ecological impacts, J. Environ. Radioact. 35 (1997) 37-51.  https://doi.org/10.1016/S0265-931X(96)00028-8
  10. A. Aarkrog, Input of anthropogenic radionuclides into the World Ocean, Deep Sea Res. Part II Top. Stud. Oceanogr. 50 (2003) 2597e2606, https://doi.org/10.1016/S0967-0645(03)00137-1. 
  11. S.B. Gulin, V.N. Egorov, M.S. Duka, I.G. Sidorov, V.Yu. Proskurnin, N.Yu. Mirzoyeva, O.N. Bey, L.V. Gulina, Deep-water profiling of 137Cs and 90Sr in the Black Sea: a further insight into dynamics of the post-Chernobyl radioactive contamination, J. Radioanal. Nucl. Chem. 304 (2015) 779-783, https://doi.org/10.1007/s10967-014-3848-9. 
  12. Q. Chen, H. Dalhgaard, S.P. Nielsen, A. Aarkrog, Determination of 210Po and 210Pb in Mussel, Fish, Sediment, Petroleum, Riso Natl. Lab. Rosk., 1998. 
  13. K. Mayer, Basics and Essentials of Statistics, IAEA Regional Advanced Training Course on Quality Managment in Environmental Applications of Nuclear Analytical Techniques, 1999. 
  14. O.N. Miroshnichenko, A.A. Paraskiv, S.B. Gulin, 137Cs concentrations in surface waters of the seas of Eurasia: results of expeditionary research in 2017, Geohimia 64 (2019) 1281-1287, https://doi.org/10.31857/S0016-752564121281-1287. 
  15. T. Takemura, H. Nakamura, M. Takigawa, H. Kondo, T. Satomura, T. Miyasaka, T. Nakajima, A numerical simulation of global transport of atmospheric particles emitted from the Fukushima Daiichi nuclear power plant, SOLA 7 (2011) 101-104, https://doi.org/10.2151/sola.2011-026. 
  16. N.T. Ngo, N.T. Binh, N.V. Phuc, L.N. Sieu, T. Y, M.T. Huong, N.T. Linh, N.M. Sinh, P.S. Hai, L.N. Chung, D.D. Nhan, N.Q. Long, N.H. Quang, Tran Tuyet Mai, Radionuclides concentration in marine environmental samples along the coast of Vietnam, J. Sains Nukl. Malays. 21 (2009). 
  17. J. Wu, K. Zhou, M. Dai, Impacts of the Fukushima nuclear accident on the China Seas: evaluation based on anthropogenic radionuclide 137Cs, Chin. Sci. Bull. 58 (2013) 552-558, https://doi.org/10.1007/s11434-012-5426-2. 
  18. P. Zhou, D. Li, L. Zhao, H. Li, F. Zhao, Y. Zheng, H. Fang, Q. Lou, W. Cai, Radioactive status of seawater and its assessment in the northeast South China Sea and the Luzon Strait and its adjacent areas from 2011 to 2014, Mar, Pollut. Bull. 131 (2018) 163-173, https://doi.org/10.1016/j.marpolbul.2018.04.009. 
  19. N.T. Ngo, L.X. Thang, N. Van Phuc, L.N. Sieu, P.Q. Trung, N.M. Ðao, N.T.H. Lan, V.T.M. Tham, L.N. Chung, Acrylic fibers coated with copper hexacyanoferrate to determine 137Cs activity in coastal seawater of Vietnam, J. Radioanal. Nucl. Chem. 326 (2020) 919-924, https://doi.org/10.1007/s10967-020-07374-4. 
  20. Mirzoeva N. Yu, S.B. Gulin, O.N. Miroshnichenko, Radionuclides of strontium and cesium (Chapter 7).2, in: A.P. Lisitzin (Ed.), Black Sea System, Scientific world, Moscow, 2018, pp. 605-624 (in Russian). 
  21. P.A. de L. Ferreira, A.P. Ribeiro, M.G. do Nascimento, C. de C. Martins, M.M. de Mahiques, R.C. Montone, R.C.L. Figueira, 137Cs in marine sediments of Admiralty Bay, King George Island, Antarctica, Sci. Total Environ. 443 (2013) 505-510, https://doi.org/10.1016/j.scitotenv.2012.11.032. 
  22. V.N. Egorov, S.B. Gulin, L.V. Malakhova, N.Yu. Mirzoeva, V.N. Popovichev, N.N. Tereshchenko, G.E. Lazorenko, O.V. Plotitsina, T.V. Malakhova, V.Yu. Proskurnin, I.G. Sidorov, A.P. Stetsyuk, L.V. Gulina, Rating water quality in Sevastopol Bay by the fluxes of pollutant deposition in bottom sediments, Water Resour. 45 (2018) 222-230, https://doi.org/10.1134/S0097807818020069. 
  23. K. Shaheed, S.S.N. Somasundaram, P.S. Hameed, M.A.R. Iyengar, A study of polonium-210 distribution aspects in the riverine ecosystem of Kaveri, Tiruchirappalli, India, Environ. Pollut. 95 (1997) 371-377.  https://doi.org/10.1016/S0269-7491(96)00131-5
  24. P. Thomas, K. Liber, An estimation of radiation doses to benthic invertebrates from sediments collected near a Canadian uranium mine, Environ. Int. 27 (2001) 341-353.  https://doi.org/10.1016/S0160-4120(01)00085-X
  25. Environment Canada, Priority Substances List Assessment Report: Releases of Radionuclides from Nuclear Facilities (Impact on Non-human Biota), Government of Canada, Ottawa, 2003. 
  26. S.B. Gulin, L.V. Gulina, I.G. Sidorov, V.Yu. Proskurnin, M.S. Duka, I.N. Moseichenko, E.A. Rodina, 40K in the Black Sea: a proxy to estimate biogenic sedimentation, J. Environ. Radioact. 134 (2014) 21-26, https://doi.org/10.1016/j.jenvrad.2014.02.011. 
  27. R 52.18.873-2018, Procedure for calculating control levels of radionuclides in bottom sediments of marine water bodies, Obninsk (2019) 17 (in Russian). 
  28. ICRP - International Commission on Radiological Protection, ICRP Publication 108. Environmental Protection: the Concept and Use of Reference Animals and Plants, Annals ICRP, 2009, p. 251 (in Russian). 
  29. ICRP - international commission on radiological protection. Publication 124. Protection of the environment under different exposure situations, Ann. ICRP (2014) 59 (in Russian). 
  30. R 52.18.333-2016, The procedure for calculating the control levels of radionuclides in sea waters, Obninsk (2016) 26 (in Russian). 
  31. W.C. Burnett, Trace Element Geochemistry of Biogenic Sediments from the Western Equatorial Pacific, 1975. 
  32. R.L. Rudnick, S. Gao, H.D. Holland, K.K. Turekian, Composition of the continental crust, The Crust 3 (2003) 1-64. 
  33. S.R. Taylor, Abundance of chemical elements in the continental crust: a new table, Geochim. Cosmochim. Acta 28 (1964) 1273-1285.  https://doi.org/10.1016/0016-7037(64)90129-2
  34. K.H. Wedepohl, The composition of the continental crust, Geochim. Cosmochim. Acta 59 (1995) 1217-1232.  https://doi.org/10.1016/0016-7037(95)00038-2
  35. D. Tang, H. Kawamura, T. Van Dien, M. Lee, Offshore phytoplankton biomass increase and its oceanographic causes in the South China Sea, Mar. Ecol. Prog. Ser. 268 (2004) 31-41, https://doi.org/10.3354/meps268031. 
  36. Dang Kien Nguyen, Influence of Temperature Conditions on Water Bioproductivity and Tuna Catch in the East Sea, Oceanology Dissertation for the degree of Candidate of Geographical Sciences, 2016 (in Russian). 
  37. R.N.J. Comans, M. Haller, P. De Preter, Sorption of cesium on illite: nonequilibrium behaviour and reversibility, Geochimica et Cosmochimica Acta 55 (1991) 433-440, https://doi.org/10.1016/0016-7037(91)90002-M. 
  38. B.L. Sawhney, Selective sorption and fixation of cations by clay minerals: a review, Clays Clay Miner 20 (1972) 93-100, https://doi.org/10.1346/CCMN.1972.0200208. 
  39. E.K. Duursma, J. Carroll, Environmental Compartments: Equilibria and Assessment of Processes between Air, Water, Sediments and Biota, Springer Science & Business Media, 2012. 
  40. G. Lujaniene, B. Vilimaite-Silobritiene, K. Joksas, Effect of coatings on caesium sorption-desorption, Environ. Chem. Phisics 25 (2003) 129-135. 
  41. Sediment Kd's and Concentration Factors for Radionuclides in the Marine Environment, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 1985. https://www.iaea.org/publications/1349/sediment-kds-and-concentration-factors-for-radionuclides-in-the-marine-environment.