Acknowledgement
The first author would like to express his special gratitude to the research office of the Sharif University of Technology for the support in the present study.
References
- D. Fink, L.T. Chadderton, Ion-solid interaction: status and perspectives, Braz. J. Phys. 35 (2005) 735-740.
- D.K. Avasthi, G.K. Mehta, Swift Heavy Ions for Materials Engineering and Nanostructuring, Springer Science & Business Media, 2011.
- R. Cabrera-Trujillo, Advances in Quantum Chemistry: Theory of the Interaction of Swift Ions with Matter, Part 1, Academic Press, 2004.
- E. Rutherford, LXXIX. The scattering of a and b particles by matter and the structure of the atom, Lond. Edinb. Dublin Philos. Mag. J. Sci 21 (125) (1911) 669-688. https://doi.org/10.1080/14786440508637080
- M. Usta, M.C. Tufan, Stopping power and range calculations in human tissues by using the Hartree-Fock-Roothaan wave functions, Radiat. Phys. Chem. (2017) 43-50.
- A. Cufar, et al., Calculations to support JET neutron yield calibration: modelling of neutron emission from a compact DT neutron generator, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 847 (2017) 199-204. https://doi.org/10.1016/j.nima.2016.12.009
- N. Pischom, S. Asavaphatiboon, P. Tangboonduangjit, T. Liamsuwan, Stopping power ratio databases for proton therapy dose calculation, J. Phys. Conf. 1505 (1) (2020), 012012.
- Y. Shi, G. Bertuccio, Simulation of 4H-SiC detectors for ultra fast particle spectroscopy, J. Instrum. 10 (2015), P03013, 03.
- J. Allison, et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (1) (2006) 270-278. https://doi.org/10.1109/TNS.2006.869826
- K. Moshkbar-Bakhshayesh, M. Ghanbari, M.B. Ghofrani, Development of a new features selection algorithm for estimation of NPPs operating parameters, Ann. Nucl. Energy 146 (2020), 107667.
- K. Moshkbar-Bakhshayesh, S. Mohtashami, Classification of NPPs transients using change of representation technique: a hybrid of unsupervised MSOM and supervised SVM, Prog. Nucl. Energy 117 (2019), 103100.
- V. Onnia, M. Tico, J. Saarinen, Feature selection method using neural network, in: Proceedings 2001 IEEE International Conference on Image Processing (Cat. No. 01CH37205), vol. 1, 2001, pp. 513-516.
- K. Moshkbar-Bakhshayesh, Investigating the performance of the supervised learning algorithms for estimating NPPs parameters in combination with the different feature selection techniques, Ann. Nucl. Energy 158 (2021), 108299.
- V. Bolon-Canedo, A. Alonso-Betanzos, Recent Advances in Ensembles for Feature Selection, Springer, 2018.
- K. Moshkbar-Bakhshayesh, The ensemble approach in comparison with the diverse feature selection techniques for estimating NPPs parameters using the different learning algorithms of the feed-forward neural network, Nucl. Eng. Technol. 53 (12) (2021) 3944-3951. https://doi.org/10.1016/j.net.2021.06.030
- L.V. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms and Applications, Pearson Education India, 2006.
- K. Moshkbar-Bakhshayesh, Identification of the appropriate architecture of multilayer feed-forward neural network for estimation of NPPs parameters using the GA in combination with the LM and the BR learning algorithms, Ann. Nucl. Energy 156 (2021), 108222.
- A. Yamazaki, M. De Souto, T. Ludermir, Optimization of neural network weights and architectures for odor recognition using simulated annealing, in: Proceedings of the 2002 IEEE International Joint Conference on Neural Networks. IJCNN'02 (Cat. No. 02CH37290), vol. 1, 2002, pp. 547-552.
- A. Fiszelew, P. Britos, A. Ochoa, H. Merlino, E. Fernandez, R. Garcia-Martinez, Finding optimal neural network architecture using genetic algorithms, Adv. Comput. Sci. Eng. Res. Comput. Sci. 27 (2007) 15-24.
- M.A.J. Idrissi, H. Ramchoun, Y. Ghanou, M. Ettaouil, Genetic algorithm for neural network architecture optimization, in: 2016 3rd IEEE International Conference on Logistics Operations Management (GOL), 2016, pp. 1-4.
- G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Contr. Signal Syst. 2 (4) (1989) 303-314. https://doi.org/10.1007/BF02551274
- H. Okut, Bayesian Regularized Neural Networks for Small N Big P Data, Artificial Neural Networks-Models and Applications, 2016, pp. 28-48.
- F.D. Foresee, M.T. Hagan, Gauss-Newton approximation to Bayesian learning, Neural Network. 3 (1997) 1930-1935. ICNN'97).
- J.F. Ziegler, J.P. Biersack, M.D. Ziegler, The Stopping and Range of Ions in Matter, SRIM, 2011. http://www.srim.org.
- D.J. Gillich, A. Kovanen, Y. Danon, Deuterated target comparison for pyroelectric crystal D-D nuclear fusion experiments, J. Nucl. Mater. 405 (2) (2010) 181-185. https://doi.org/10.1016/j.jnucmat.2010.08.012