DOI QR코드

DOI QR Code

Developing an approach for fast estimation of range of ion in interaction with material using the Geant4 toolkit in combination with the neural network

  • Received : 2021.11.10
  • Accepted : 2022.06.04
  • Published : 2022.11.25

Abstract

Precise modelling of the interaction of ions with materials is important for many applications including material characterization, ion implantation in devices, thermonuclear fusion, hadron therapy, secondary particle production (e.g. neutron), etc. In this study, a new approach using the Geant4 toolkit in combination with the Bayesian regularization (BR) learning algorithm of the feed-forward neural network (FFNN) is developed to estimate the range of ions in materials accurately and quickly. The different incident ions at different energies are interacted with the target materials. The Geant4 is utilized to model the interactions and to calculate the range of the ions. Afterward, the appropriate architecture of the FFNN-BR with the relevant input features is utilized to learn the modelled ranges and to estimate the new ranges for the new cases. The notable achievements of the proposed approach are: 1- The range of ions in different materials is given as quickly as possible and the time required for estimating the ranges can be neglected (i.e. less than 0.01 s by a typical personal computer). 2- The proposed approach can generalize its ability for estimating the new untrained cases. 3- There is no need for a pre-made lookup table for the estimation of the range values.

Keywords

Acknowledgement

The first author would like to express his special gratitude to the research office of the Sharif University of Technology for the support in the present study.

References

  1. D. Fink, L.T. Chadderton, Ion-solid interaction: status and perspectives, Braz. J. Phys. 35 (2005) 735-740.
  2. D.K. Avasthi, G.K. Mehta, Swift Heavy Ions for Materials Engineering and Nanostructuring, Springer Science & Business Media, 2011.
  3. R. Cabrera-Trujillo, Advances in Quantum Chemistry: Theory of the Interaction of Swift Ions with Matter, Part 1, Academic Press, 2004.
  4. E. Rutherford, LXXIX. The scattering of a and b particles by matter and the structure of the atom, Lond. Edinb. Dublin Philos. Mag. J. Sci 21 (125) (1911) 669-688. https://doi.org/10.1080/14786440508637080
  5. M. Usta, M.C. Tufan, Stopping power and range calculations in human tissues by using the Hartree-Fock-Roothaan wave functions, Radiat. Phys. Chem. (2017) 43-50.
  6. A. Cufar, et al., Calculations to support JET neutron yield calibration: modelling of neutron emission from a compact DT neutron generator, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 847 (2017) 199-204. https://doi.org/10.1016/j.nima.2016.12.009
  7. N. Pischom, S. Asavaphatiboon, P. Tangboonduangjit, T. Liamsuwan, Stopping power ratio databases for proton therapy dose calculation, J. Phys. Conf. 1505 (1) (2020), 012012.
  8. Y. Shi, G. Bertuccio, Simulation of 4H-SiC detectors for ultra fast particle spectroscopy, J. Instrum. 10 (2015), P03013, 03.
  9. J. Allison, et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (1) (2006) 270-278. https://doi.org/10.1109/TNS.2006.869826
  10. K. Moshkbar-Bakhshayesh, M. Ghanbari, M.B. Ghofrani, Development of a new features selection algorithm for estimation of NPPs operating parameters, Ann. Nucl. Energy 146 (2020), 107667.
  11. K. Moshkbar-Bakhshayesh, S. Mohtashami, Classification of NPPs transients using change of representation technique: a hybrid of unsupervised MSOM and supervised SVM, Prog. Nucl. Energy 117 (2019), 103100.
  12. V. Onnia, M. Tico, J. Saarinen, Feature selection method using neural network, in: Proceedings 2001 IEEE International Conference on Image Processing (Cat. No. 01CH37205), vol. 1, 2001, pp. 513-516.
  13. K. Moshkbar-Bakhshayesh, Investigating the performance of the supervised learning algorithms for estimating NPPs parameters in combination with the different feature selection techniques, Ann. Nucl. Energy 158 (2021), 108299.
  14. V. Bolon-Canedo, A. Alonso-Betanzos, Recent Advances in Ensembles for Feature Selection, Springer, 2018.
  15. K. Moshkbar-Bakhshayesh, The ensemble approach in comparison with the diverse feature selection techniques for estimating NPPs parameters using the different learning algorithms of the feed-forward neural network, Nucl. Eng. Technol. 53 (12) (2021) 3944-3951. https://doi.org/10.1016/j.net.2021.06.030
  16. L.V. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms and Applications, Pearson Education India, 2006.
  17. K. Moshkbar-Bakhshayesh, Identification of the appropriate architecture of multilayer feed-forward neural network for estimation of NPPs parameters using the GA in combination with the LM and the BR learning algorithms, Ann. Nucl. Energy 156 (2021), 108222.
  18. A. Yamazaki, M. De Souto, T. Ludermir, Optimization of neural network weights and architectures for odor recognition using simulated annealing, in: Proceedings of the 2002 IEEE International Joint Conference on Neural Networks. IJCNN'02 (Cat. No. 02CH37290), vol. 1, 2002, pp. 547-552.
  19. A. Fiszelew, P. Britos, A. Ochoa, H. Merlino, E. Fernandez, R. Garcia-Martinez, Finding optimal neural network architecture using genetic algorithms, Adv. Comput. Sci. Eng. Res. Comput. Sci. 27 (2007) 15-24.
  20. M.A.J. Idrissi, H. Ramchoun, Y. Ghanou, M. Ettaouil, Genetic algorithm for neural network architecture optimization, in: 2016 3rd IEEE International Conference on Logistics Operations Management (GOL), 2016, pp. 1-4.
  21. G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Contr. Signal Syst. 2 (4) (1989) 303-314. https://doi.org/10.1007/BF02551274
  22. H. Okut, Bayesian Regularized Neural Networks for Small N Big P Data, Artificial Neural Networks-Models and Applications, 2016, pp. 28-48.
  23. F.D. Foresee, M.T. Hagan, Gauss-Newton approximation to Bayesian learning, Neural Network. 3 (1997) 1930-1935. ICNN'97).
  24. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, The Stopping and Range of Ions in Matter, SRIM, 2011. http://www.srim.org.
  25. D.J. Gillich, A. Kovanen, Y. Danon, Deuterated target comparison for pyroelectric crystal D-D nuclear fusion experiments, J. Nucl. Mater. 405 (2) (2010) 181-185. https://doi.org/10.1016/j.jnucmat.2010.08.012