DOI QR코드

DOI QR Code

Application of CFD model for passive autocatalytic recombiners to formulate an empirical correlation for integral containment analysis

  • Vikram Shukla (Bhabha Atomic Research Centre) ;
  • Bhuvaneshwar Gera (Bhabha Atomic Research Centre) ;
  • Sunil Ganju (Department of Atomic Energy) ;
  • Salil Varma (Bhabha Atomic Research Centre) ;
  • N.K. Maheshwari (Bhabha Atomic Research Centre) ;
  • P.K. Guchhait (Bhabha Atomic Research Centre) ;
  • S. Sengupta (Bhabha Atomic Research Centre)
  • Received : 2021.12.23
  • Accepted : 2022.06.04
  • Published : 2022.11.25

Abstract

Hydrogen mitigation using Passive Autocatalytic Recombiners (PARs) has been widely accepted methodology inside reactor containment of accident struck Nuclear Power Plants. They reduce hydrogen concentration inside reactor containment by recombining it with oxygen from containment air on catalyst surfaces at ambient temperatures. Exothermic heat of reaction drives the product steam upwards, establishing natural convection around PAR, thus invoking homogenisation inside containment. CFD models resolving individual catalyst plate channels of PAR provide good insight about temperature and hydrogen recombination. But very thin catalyst plates compared to large dimensions of the enclosures involved result in intensive calculations. Hence, empirical correlations specific to PARs being modelled are often used in integral containment studies. In this work, an experimentally validated CFD model of PAR has been employed for developing an empirical correlation for Indian PAR. For this purpose, detailed parametric study involving different gas mixture variables at PAR inlet has been performed. For each case, respective values of gas mixture variables at recombiner outlet have been tabulated. The obtained data matrix has then been processed using regression analysis to obtain a set of correlations between inlet and outlet variables. The empirical correlation thus developed, can be easily plugged into commercially available CFD software.

Keywords

References

  1. IAEA Techdoc 1196, F. Fineschi, G. Koroll, J. Rohde, Mitigation of Hydrogen Hazards in Water Cooled Power Reactors, February 2001. VIENNA.
  2. M. Heitsch, Fluid dynamic analysis of a catalytic recombiner to remove hydrogen, Nucl. Eng. Des. 201 (2000) 1-10. https://doi.org/10.1016/S0029-5493(00)00259-4
  3. E.A. Reinecke, I.M. Tragsdorf, K. Gierling, Studies on innovative hydrogen recombiners as safety devices in the containments of light water reactors, Nucl. Eng. Des. 230 (2004) 49-59. https://doi.org/10.1016/j.nucengdes.2003.10.009
  4. V.D. Keller, Passive catalytic hydrogen recombiners for nuclear power stations, ISSN 0040-6015, Thermal Engineering 54/3 (2007) 236-239. https://doi.org/10.1134/S0040601507030111
  5. E. Bachellerie, F. Arnould, M. Auglaire, B. Boeck, O. Braillard, B. Eckardt, F. Ferroni, R. Moffett, Generic approach for designing and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containments, Nucl. Eng. Des. 221 (2003) 151-165. https://doi.org/10.1016/S0029-5493(02)00330-8
  6. R. Gambetta, A. Alemberti, A CFD validation methodology for containment code calculations of hydrogen mixing and recombination, in: International Symposium on Nuclear Energy, Nuclear Energy Development in the South-East Europe, Bucuresti (Romania), SIEN, 2001, pp. 270-281.
  7. M. Stephane, M. Namane, O. Mehdi, CFD recombiner modeling and validation on the H2-par and Kali-H2 experiments, Science and Technology of Nuclear Installations 2011 (2011) 1-13.
  8. E.A. Reinecke, K. Stephan, W. Jahn, J. Christian, H.J. Allelein, Simulation of the efficiency of hydrogen recombiners as safety devices, Int. J. Hydrogen Energy 38 (2013) 8117-8124. https://doi.org/10.1016/j.ijhydene.2012.09.093
  9. D. Mehdi, S. Reza, R. Mohammad, J. Gholamreza, S.S. Amir, Investigation of a hydrogen mitigation system during large break loss-of-coolant accident for a two-loop pressurized water reactor, Nucl. Eng. Technol. 48 (2016), 117-1183.
  10. S. Mahdi, Y. Faramarz, K. Kaveh, M.H. Seyed, Determination of PAR configuration for PWR containment design: a hydrogen mitigation strategy, Int. J. Hydrogen Energy 42 (2017) 7104-7119. https://doi.org/10.1016/j.ijhydene.2017.01.110
  11. S.T. Revankar, Passive containment cooling system with hydrogen recombiner for prolonged station blackout, International Journal of Nuclear Safety and Security 1/1 (2019) 1-17.
  12. Y. Peijian, X. Junyin, Y. Wei, Z. Chen, Y. Xinhai, Z. Shuangliang, Z. Shenghu, T.T. Shan, Superhydrophobic Pd@CeO2/Al2O3 catalyst coating for hydrogen mitigation systems in nuclear power plants, Int. J. Hydrogen Energy 44/39 (2019) 21746-21758.
  13. R.K. Raman, K.N. Iyer, S.R. Ravva, CFD studies of hydrogen mitigation by recombiner using correlations of reaction rates obtained from detailed mechanism, Nucl. Eng. Des. 360 (2020), 110528.
  14. R.W. Schefer, Catalyzed combustion of H2/air mixtures in a flat plate boundary layer: II, numerical model, Combust. Flame 45 (1982) 171-190. https://doi.org/10.1016/0010-2180(82)90043-8
  15. B. Gera, P.K. Sharma, R.K. Singh, K.K. Vaze, Integrated CFD Simulation of Passive Autocatalytic Recombiner in an Enclosure Filled with Hydrogen with Two Approaches, SMiRT 21, New Delhi, 2011a. III 299.
  16. SARNET, Severe Accident Research NETwork of Excellence. http://www.sarnet.eu.
  17. M. Babic, I. Kljenak, B. Mavko, Numerical Study of Interaction between NPP Containment Atmosphere and Passive Autocatalytic Recombiners, International Conference Nuclear Energy for New Europe 2006, Slovenia, September, 2006.
  18. B. Gera, P.K. Sharma, R.K. Singh, K.K. Vaze, CFD analysis of passive autocatalytic recombiner interaction with atmosphere, Kerntechnik 76 (2011 b) 2 98-103. https://doi.org/10.3139/124.110119
  19. S. Kudriakov, F. Dabbene, E. Studer, A. Beccantini, J.P. Magnaud, H. Paillere, A. Bentaib, A. Bleyer, J. Malet, E. Porcheron, C. Caroli, The TONUS CFD code for hydrogen risk analysis: physical models, numerical schemes and validation matrix, Nucl. Eng. Des. 238 (2008) 551-565. https://doi.org/10.1016/j.nucengdes.2007.02.048
  20. V. Shukla, S. Ganju, S. Varma, S. Sengupta, N.K. Maheshwari, Affect of recombiner location on its performance in closed containment under dry and steam conditions, Int. J. Hydrogen Energy 44/47 (2019) 25957-25973.
  21. V. Shukla, D. Tyagi, S. Varma, B. Saha, A.N. Shirsat, S. Ganju, S. Sengupta, S. Bhattacharya, N.K. Maheshwari, Evaluation of reaction kinetics for the catalyst used in PCRD and study of channel affect on the same, Int. J. Hydrogen Energy 45/15 (2020) 8584-8594. https://doi.org/10.1016/j.ijhydene.2020.01.091
  22. V. Shukla, D. Tyagi, B. Gera, S. Varma, S. Ganju, N.K. Maheshwari, Development and validation of CFD model for catalytic recombiner against experimental results, Chem. Eng. J. 407 (2021), 127216.