Acknowledgement
This work was supported in part by research computing resources and technical expertise via a partnership between Kennesaw State University's Office of the Vice President for Research and the Office of the CIO and Vice President for Information Technology.
References
- S. Okada, N. Momoshima, Overview of tritium: characteristics, sources, and problems, Health Phys. 65 (6) (1993) 595-609. https://doi.org/10.1097/00004032-199312000-00001
- T. Asano, K. Sato, J.-i. Onodera, United nations scientific committee on the effects of atomic radiation 2000 report, Jpn. J. Health Phys. 36 (2) (2001) 149-158. https://doi.org/10.5453/jhps.36.149
- H.C. Urey, F.G. Brickwedde, G.M. Murphy, A hydrogen isotope of mass 2, Phys. Rev. 39 (1) (1932) 164.
- S.L. Harbeson, R.D. Tung, Deuterium in drug discovery and development, Annu. Rep. Med. Chem. 46 (2011) 403-417.
- H. Rae, Selecting Heavy Water Processes, ACS Publications, 1978.
- J. Ayres, C. Trilling, Heavy water and organic fluids as neutron moderator and reflector materials, Nucl. Eng. Des. 14 (3) (1971) 363-389. https://doi.org/10.1016/0029-5493(70)90158-5
- J. Jacquinot, et al., Overview of ITER physics deuterium-tritium experiments in JET, Nucl. Fusion 39 (2) (1999) 235.
- S.M. Motevalli, F. Fadaei, A comparison between the burn condition of deuterium-tritium and deuterium-helium-3 reaction and stability limits, Z. Naturforsch. 70 (2) (2015) 79-84.
- J. Team, Fusion energy production from a deuterium-tritium plasma in the JET tokamak, Nucl. Fusion 32 (2) (1992) 187.
- S. Sandri, et al., A review of radioactive wastes production and potential environmental releases at experimental nuclear fusion facilities, Environments 7 (1) (2020) 6.
- C.W. Forsberg, et al., Tritium control and capture in salt-cooled fission and fusion reactors: status, challenges, and path forward, Nucl. Technol. 197 (2) (2017) 119-139. https://doi.org/10.13182/NT16-101
- R.A. Causey, Hydrogen isotope retention and recycling in fusion reactor plasma-facing components, J. Nucl. Mater. 300 (2-3) (2002) 91-117. https://doi.org/10.1016/S0022-3115(01)00732-2
- M. Shimada, Tritium Transport in Fusion Reactor Materials, 2020.
- R.J. Pearson, A.B. Antoniazzi, W.J. Nuttall, Tritium supply and use: a key issue for the development of nuclear fusion energy, Fusion Eng. Des. 136 (2018) 1140-1148. https://doi.org/10.1016/j.fusengdes.2018.04.090
- L. Vergari, R.O. Scarlat, Thermodynamics of hydrogen in graphite at high temperature and the effects of oxidation, irradiation and isotopics, J. Nucl. Mater. (2021), 152797.
- R.A. Causey, R.A. Karnesky, C. San Marchi, Tritium Barriers and Tritium Diffusion in Fusion Reactors, 2012.
- V. Philipps, et al., Comparison of tokamak behaviour with tungsten and low-Z plasma facing materials, Plasma Phys. Contr. Fusion 42 (12B) (2000) B293.
- G. Federici, et al., Plasma-material interactions in current tokamaks and their implications for next step fusion reactors, Nucl. Fusion 41 (12) (1967), 2001.
- D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Mechanical properties of graphene and graphene-based nanocomposites, Prog. Mater. Sci. 90 (2017) 75-127. https://doi.org/10.1016/j.pmatsci.2017.07.004
- J. Park, P. Pena, A. Tekes, Thermal transport behavior of carbon nanotube-graphene junction under deformation, Int. J. Nanosci. 19 (2020), 1950013, 02.
- A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10 (8) (2011) 569-581. https://doi.org/10.1038/nmat3064
- G. Yang, L. Li, W.B. Lee, M.C. Ng, Structure of graphene and its disorders: a review, Sci. Technol. Adv. Mater. 19 (1) (2018) 613-648. https://doi.org/10.1080/14686996.2018.1494493
- P. Zhang, et al., Fracture toughness of graphene, Nat. Commun. 5 (1) (2014) 1-7.
- K.T. Young, C. Smith, T.M. Krentz, D.A. Hitchcock, E.M. Vogel, Graphene synthesized by chemical vapor deposition as a hydrogen isotope permeation barrier, Carbon 176 (2021) 106-117. https://doi.org/10.1016/j.carbon.2021.01.127
- M. Lozada-Hidalgo, S. Zhang, S. Hu, A. Esfandiar, I. Grigorieva, A. Geim, Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping, Nat. Commun. 8 (1) (2017) 1-5. https://doi.org/10.1038/s41467-016-0009-6
- M. Hankel, Y. Jiao, A. Du, S.K. Gray, S.C. Smith, Asymmetrically decorated, doped porous graphene as an effective membrane for hydrogen isotope separation, J. Phys. Chem. C 116 (11) (2012) 6672-6676. https://doi.org/10.1021/jp211930a
- H. Nakamura, A. Takayama, A. Ito, Molecular dynamics simulation of hydrogen isotope injection into graphene, Contrib. Plasma Phys. 48 (1-3) (2008) 265-269. https://doi.org/10.1002/ctpp.200810046
- S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1-19. https://doi.org/10.1006/jcph.1995.1039
- D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Condens. Matter 14 (4) (2002) 783.
- A. Ito, Y. Wang, S. Irle, K. Morokuma, H. Nakamura, Molecular Dynamics Simulation of Chemical Sputtering of Hydrogen Atom on Layer Structured Graphite, National Inst. for Fusion Science, 2008.
- S. Xiao, W. Hou, Studies of size effects on carbon nanotubes' mechanical properties by using different potential functions, Fullerenes, Nanotub. Carbon Nanostruct. 14 (1) (2006) 9-16. https://doi.org/10.1080/15363830500538425
- G. Gao, K. Van Workum, J.D. Schall, J.A. Harrison, Elastic constants of diamond from molecular dynamics simulations, J. Phys. Condens. Matter 18 (32) (2006), S1737.
- A. Ito, S. Okamoto, Molecular dynamics analysis on effects of vacancies upon mechanical properties of graphene and graphite, Eng. Lett. 20 (3) (2012).
- A. Favata, A. Micheletti, P. Podio-Guidugli, N.M. Pugno, Geometry and self-stress of single-wall carbon nanotubes and graphene via a discrete model based on a 2nd-generation REBO potential, J. Elasticity 125 (1) (2016) 1-37. https://doi.org/10.1007/s10659-015-9568-8
- S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (14) (2000) 6472-6486. https://doi.org/10.1063/1.481208
- R.C. Ehemann, P.S. Krstiꠑc, J. Dadras, P.R. Kent, J. Jakowski, Detection of hydrogen using graphene, Nanoscale Res. Lett. 7 (1) (2012) 1-14. https://doi.org/10.1186/1556-276X-7-1
- Y. Wang, H.-J. Qian, K. Morokuma, S. Irle, Coupled cluster and density functional theory calculations of atomic hydrogen chemisorption on pyrene and coronene as model systems for graphene hydrogenation, J. Phys. Chem. 116 (26) (2012) 7154-7160.
- H. Jiang, et al., Imaging covalent bond formation by H atom scattering from graphene, Science 364 (6438) (2019) 379-382. https://doi.org/10.1126/science.aaw6378
- A. Ito, H. Nakamura, A. Takayama, Chemical reaction between single hydrogen atom and graphene, arXiv preprint cond-mat/0703377 (2007).
- X. Sha, B. Jackson, First-principles study of the structural and energetic properties of H atoms on a graphite (0001) surface, Surf. Sci. 496 (3) (2002) 318-330. https://doi.org/10.1016/S0039-6028(01)01602-8
- M. Zhang, K. Deng, F. Wei, X. Wu, L. Du, W. Liu, Adsorption and Desorption of Tritium On/from Nuclear Graphite, ACS Omega, 2021.
- F.H. Yang, R.T. Yang, Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite:: insight into hydrogen storage in carbon nanotubes, Carbon 40 (3) (2002) 437-444. https://doi.org/10.1016/S0008-6223(01)00199-3
- A. Krasheninnikov, P. Lehtinen, A. Foster, R. Nieminen, Bending the rules: contrasting vacancy energetics and migration in graphite and carbon nanotubes, Chem. Phys. Lett. 418 (1-3) (2006) 132-136. https://doi.org/10.1016/j.cplett.2005.10.106
- A. El-Barbary, R. Telling, C. Ewels, M. Heggie, P. Briddon, Structure and energetics of the vacancy in graphite, Phys. Rev. B 68 (14) (2003), 144107.
- G.-D. Lee, C. Wang, E. Yoon, N.-M. Hwang, D.-Y. Kim, K. Ho, Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers, Phys. Rev. Lett. 95 (20) (2005), 205501.
- E. Ertekin, D. Chrzan, M.S. Daw, Topological description of the Stone-Wales defect formation energy in carbon nanotubes and graphene, Phys. Rev. B 79 (15) (2009), 155421.
- C.O. Reinhold, P.S. Krstic, S. Stuart, Hydrogen reflection in low-energy collisions with amorphous carbon, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 267 (4) (2009) 691-694. https://doi.org/10.1016/j.nimb.2008.11.036
- S. Saito, A.M. Ito, H. Nakamura, Molecular dynamics simulation of the incident angle dependence of reactions between graphene and hydrogen atom, Plasma Fusion Res. 5 (2010). S2076-S2076. https://doi.org/10.1585/pfr.5.S2076