DOI QR코드

DOI QR Code

Adsorption of hydrogen isotopes on graphene

  • Received : 2022.01.24
  • Accepted : 2022.06.13
  • Published : 2022.11.25

Abstract

We investigated the possibility of using graphene for control of hydrogen isotopes by exploring adsorption, reflection, and penetration of hydrogen isotopes on graphene using molecular dynamics. Reflection is the dominant interaction when hydrogen isotopes have low incident energy. Adsorption rates increase with increasing incident energy until 5 eV is reached. After 5 eV, adsorption rates decrease as incident energy increases. At incident energies greater than 5 eV, adsorption rates increase with the number of graphene layers. At low incident energies (<1 eV), no isotopic effects on interactions are observed since the predominant interaction is derived from the force of π electrons. Between 1 eV and 50 eV, heavier isotopes exhibit higher adsorption rates and lower reflection rates than lighter isotopes, due to the greater momentum of heavier isotopes. Adsorption rates are consistently higher when the incident angle of the impacting atoms is smaller between 0.5 eV and 5 eV. At higher energies (>5 eV), larger incident angles lead to higher reflection and lower penetration rates. At high incident energies (>5 eV), crumpled graphene has higher adsorption and lower penetration rates than wrinkled or unwrinkled graphene. The results obtained in this research study will be used to develop novel nanomaterials that can be employed for tritium control.

Keywords

Acknowledgement

This work was supported in part by research computing resources and technical expertise via a partnership between Kennesaw State University's Office of the Vice President for Research and the Office of the CIO and Vice President for Information Technology.

References

  1. S. Okada, N. Momoshima, Overview of tritium: characteristics, sources, and problems, Health Phys. 65 (6) (1993) 595-609.  https://doi.org/10.1097/00004032-199312000-00001
  2. T. Asano, K. Sato, J.-i. Onodera, United nations scientific committee on the effects of atomic radiation 2000 report, Jpn. J. Health Phys. 36 (2) (2001) 149-158.  https://doi.org/10.5453/jhps.36.149
  3. H.C. Urey, F.G. Brickwedde, G.M. Murphy, A hydrogen isotope of mass 2, Phys. Rev. 39 (1) (1932) 164. 
  4. S.L. Harbeson, R.D. Tung, Deuterium in drug discovery and development, Annu. Rep. Med. Chem. 46 (2011) 403-417. 
  5. H. Rae, Selecting Heavy Water Processes, ACS Publications, 1978. 
  6. J. Ayres, C. Trilling, Heavy water and organic fluids as neutron moderator and reflector materials, Nucl. Eng. Des. 14 (3) (1971) 363-389.  https://doi.org/10.1016/0029-5493(70)90158-5
  7. J. Jacquinot, et al., Overview of ITER physics deuterium-tritium experiments in JET, Nucl. Fusion 39 (2) (1999) 235. 
  8. S.M. Motevalli, F. Fadaei, A comparison between the burn condition of deuterium-tritium and deuterium-helium-3 reaction and stability limits, Z. Naturforsch. 70 (2) (2015) 79-84. 
  9. J. Team, Fusion energy production from a deuterium-tritium plasma in the JET tokamak, Nucl. Fusion 32 (2) (1992) 187. 
  10. S. Sandri, et al., A review of radioactive wastes production and potential environmental releases at experimental nuclear fusion facilities, Environments 7 (1) (2020) 6. 
  11. C.W. Forsberg, et al., Tritium control and capture in salt-cooled fission and fusion reactors: status, challenges, and path forward, Nucl. Technol. 197 (2) (2017) 119-139.  https://doi.org/10.13182/NT16-101
  12. R.A. Causey, Hydrogen isotope retention and recycling in fusion reactor plasma-facing components, J. Nucl. Mater. 300 (2-3) (2002) 91-117.  https://doi.org/10.1016/S0022-3115(01)00732-2
  13. M. Shimada, Tritium Transport in Fusion Reactor Materials, 2020. 
  14. R.J. Pearson, A.B. Antoniazzi, W.J. Nuttall, Tritium supply and use: a key issue for the development of nuclear fusion energy, Fusion Eng. Des. 136 (2018) 1140-1148.  https://doi.org/10.1016/j.fusengdes.2018.04.090
  15. L. Vergari, R.O. Scarlat, Thermodynamics of hydrogen in graphite at high temperature and the effects of oxidation, irradiation and isotopics, J. Nucl. Mater. (2021), 152797. 
  16. R.A. Causey, R.A. Karnesky, C. San Marchi, Tritium Barriers and Tritium Diffusion in Fusion Reactors, 2012. 
  17. V. Philipps, et al., Comparison of tokamak behaviour with tungsten and low-Z plasma facing materials, Plasma Phys. Contr. Fusion 42 (12B) (2000) B293. 
  18. G. Federici, et al., Plasma-material interactions in current tokamaks and their implications for next step fusion reactors, Nucl. Fusion 41 (12) (1967), 2001. 
  19. D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Mechanical properties of graphene and graphene-based nanocomposites, Prog. Mater. Sci. 90 (2017) 75-127.  https://doi.org/10.1016/j.pmatsci.2017.07.004
  20. J. Park, P. Pena, A. Tekes, Thermal transport behavior of carbon nanotube-graphene junction under deformation, Int. J. Nanosci. 19 (2020), 1950013, 02. 
  21. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10 (8) (2011) 569-581.  https://doi.org/10.1038/nmat3064
  22. G. Yang, L. Li, W.B. Lee, M.C. Ng, Structure of graphene and its disorders: a review, Sci. Technol. Adv. Mater. 19 (1) (2018) 613-648.  https://doi.org/10.1080/14686996.2018.1494493
  23. P. Zhang, et al., Fracture toughness of graphene, Nat. Commun. 5 (1) (2014) 1-7. 
  24. K.T. Young, C. Smith, T.M. Krentz, D.A. Hitchcock, E.M. Vogel, Graphene synthesized by chemical vapor deposition as a hydrogen isotope permeation barrier, Carbon 176 (2021) 106-117.  https://doi.org/10.1016/j.carbon.2021.01.127
  25. M. Lozada-Hidalgo, S. Zhang, S. Hu, A. Esfandiar, I. Grigorieva, A. Geim, Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping, Nat. Commun. 8 (1) (2017) 1-5.  https://doi.org/10.1038/s41467-016-0009-6
  26. M. Hankel, Y. Jiao, A. Du, S.K. Gray, S.C. Smith, Asymmetrically decorated, doped porous graphene as an effective membrane for hydrogen isotope separation, J. Phys. Chem. C 116 (11) (2012) 6672-6676.  https://doi.org/10.1021/jp211930a
  27. H. Nakamura, A. Takayama, A. Ito, Molecular dynamics simulation of hydrogen isotope injection into graphene, Contrib. Plasma Phys. 48 (1-3) (2008) 265-269.  https://doi.org/10.1002/ctpp.200810046
  28. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1-19.  https://doi.org/10.1006/jcph.1995.1039
  29. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Condens. Matter 14 (4) (2002) 783. 
  30. A. Ito, Y. Wang, S. Irle, K. Morokuma, H. Nakamura, Molecular Dynamics Simulation of Chemical Sputtering of Hydrogen Atom on Layer Structured Graphite, National Inst. for Fusion Science, 2008. 
  31. S. Xiao, W. Hou, Studies of size effects on carbon nanotubes' mechanical properties by using different potential functions, Fullerenes, Nanotub. Carbon Nanostruct. 14 (1) (2006) 9-16.  https://doi.org/10.1080/15363830500538425
  32. G. Gao, K. Van Workum, J.D. Schall, J.A. Harrison, Elastic constants of diamond from molecular dynamics simulations, J. Phys. Condens. Matter 18 (32) (2006), S1737. 
  33. A. Ito, S. Okamoto, Molecular dynamics analysis on effects of vacancies upon mechanical properties of graphene and graphite, Eng. Lett. 20 (3) (2012). 
  34. A. Favata, A. Micheletti, P. Podio-Guidugli, N.M. Pugno, Geometry and self-stress of single-wall carbon nanotubes and graphene via a discrete model based on a 2nd-generation REBO potential, J. Elasticity 125 (1) (2016) 1-37.  https://doi.org/10.1007/s10659-015-9568-8
  35. S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (14) (2000) 6472-6486.  https://doi.org/10.1063/1.481208
  36. R.C. Ehemann, P.S. Krstiꠑc, J. Dadras, P.R. Kent, J. Jakowski, Detection of hydrogen using graphene, Nanoscale Res. Lett. 7 (1) (2012) 1-14.  https://doi.org/10.1186/1556-276X-7-1
  37. Y. Wang, H.-J. Qian, K. Morokuma, S. Irle, Coupled cluster and density functional theory calculations of atomic hydrogen chemisorption on pyrene and coronene as model systems for graphene hydrogenation, J. Phys. Chem. 116 (26) (2012) 7154-7160. 
  38. H. Jiang, et al., Imaging covalent bond formation by H atom scattering from graphene, Science 364 (6438) (2019) 379-382.  https://doi.org/10.1126/science.aaw6378
  39. A. Ito, H. Nakamura, A. Takayama, Chemical reaction between single hydrogen atom and graphene, arXiv preprint cond-mat/0703377 (2007). 
  40. X. Sha, B. Jackson, First-principles study of the structural and energetic properties of H atoms on a graphite (0001) surface, Surf. Sci. 496 (3) (2002) 318-330.  https://doi.org/10.1016/S0039-6028(01)01602-8
  41. M. Zhang, K. Deng, F. Wei, X. Wu, L. Du, W. Liu, Adsorption and Desorption of Tritium On/from Nuclear Graphite, ACS Omega, 2021. 
  42. F.H. Yang, R.T. Yang, Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite:: insight into hydrogen storage in carbon nanotubes, Carbon 40 (3) (2002) 437-444.  https://doi.org/10.1016/S0008-6223(01)00199-3
  43. A. Krasheninnikov, P. Lehtinen, A. Foster, R. Nieminen, Bending the rules: contrasting vacancy energetics and migration in graphite and carbon nanotubes, Chem. Phys. Lett. 418 (1-3) (2006) 132-136.  https://doi.org/10.1016/j.cplett.2005.10.106
  44. A. El-Barbary, R. Telling, C. Ewels, M. Heggie, P. Briddon, Structure and energetics of the vacancy in graphite, Phys. Rev. B 68 (14) (2003), 144107. 
  45. G.-D. Lee, C. Wang, E. Yoon, N.-M. Hwang, D.-Y. Kim, K. Ho, Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers, Phys. Rev. Lett. 95 (20) (2005), 205501. 
  46. E. Ertekin, D. Chrzan, M.S. Daw, Topological description of the Stone-Wales defect formation energy in carbon nanotubes and graphene, Phys. Rev. B 79 (15) (2009), 155421. 
  47. C.O. Reinhold, P.S. Krstic, S. Stuart, Hydrogen reflection in low-energy collisions with amorphous carbon, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 267 (4) (2009) 691-694.  https://doi.org/10.1016/j.nimb.2008.11.036
  48. S. Saito, A.M. Ito, H. Nakamura, Molecular dynamics simulation of the incident angle dependence of reactions between graphene and hydrogen atom, Plasma Fusion Res. 5 (2010). S2076-S2076. https://doi.org/10.1585/pfr.5.S2076