DOI QR코드

DOI QR Code

Evaluation on the buffer temperature by thermal conductivity of gap-filling material in a high-level radioactive waste repository

  • Seok Yoon (Disposal Safety Evaluation Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Min-Jun Kim (Geology Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Seeun Chang (Radioactive Waste Disposal Team, Korea Atomic Energy Research Institute (KAERI)) ;
  • Gi-Jun Lee (Disposal Safety Evaluation Research Division, Korea Atomic Energy Research Institute (KAERI))
  • Received : 2022.02.06
  • Accepted : 2022.06.07
  • Published : 2022.11.25

Abstract

As high-level radioactive waste (HLW) generated from nuclear power plants is harmful to the human body, it must be safely disposed of by an engineered barrier system consisting of disposal canisters and buffer and backfill materials. A gap exists between the canister and buffer material in a HLW repository and between the buffer material and natural rock-this gap may reduce the water-blocking ability and heat transfer efficiency of the engineered barrier materials. Herein, the basic characteristics and thermal properties of granular bentonite, a candidate gap-filling material, were investigated, and their effects on the temperature change of the buffer material were analyzed numerically. Heat transfer by air conduction and convection in the gap were considered simultaneously. Moreover, by applying the Korean reference disposal system, changes in the properties of the buffer material were derived, and the basic design of the engineered barrier system was presented according to the gap filling material (GFM). The findings showed that a GFM with high initial thermal conductivity must be filled in the space between the buffer material and rock. Moreover, the target dry density of the buffer material varied according to the initial wet density, specific gravity, and water content values of the GFM.

Keywords

Acknowledgement

This research was funded by the Basic Research Project (2020R1F1A1072379) and Nuclear Research and Development Program (2021M2E3A2041351) by the National Research Foundation of Korea.

References

  1. W.Z. Chen, Y.S. Ma, H.D. Yu, F.F. Li, X.L. Li, X. Sillen, Effects of temperature and thermally-induced microstructure change on hydraulic conductivity of Boom clay, J. Rock Mech. Geotech. Eng. 9 (2017) 383-395.  https://doi.org/10.1016/j.jrmge.2017.03.006
  2. L. Zheng, J. Rutqvist, J.T. Birkholzer, H.H. Liu, On the impact of temperature up to 200 ℃ in clay repositories with bentonite engineered barrier system: a study with coupled thermal, hydrological, chemical, and mechanical modeling, Eng. Geol. 197 (2015) 278-295.  https://doi.org/10.1016/j.enggeo.2015.08.026
  3. S. Yoon, G.Y. Kim, Measuring thermal conductivity and water suction for variably saturated bentonite, Nucl. Eng. Technol. 53 (2021) 1041-1048.  https://doi.org/10.1016/j.net.2020.08.017
  4. M. Juvankoski, Buffer Design 2012, Posiva 2012-14, Posiva Oy. 
  5. M.J. Kim, S.R. Lee, S. Yoon, J.S. Jeon, M.S. Kim, Effect of thermal properties of bentonite buffer on temperature variation, J. Korean Geotechn. Soc. 34 (1) (2018) 17-24. 
  6. M.V. Villar, P.L. Martin, J.M. Barcala, Modification of physical, mechanical and hydraulic properties of bentonite by thermo-hydraulic gradients, Eng. Geol. 81 (2006) 284-297. 
  7. D.A. Dixon, M.N. Gray, A.W. Thomas, A study of the compaction properties of potential clay-sand buffer mixtures for use in nuclear fuel waste disposal, Eng. Geol. 21 (1985) 247-255.  https://doi.org/10.1016/0013-7952(85)90015-8
  8. O. Karnland, Chemical and Mineralogical Characterization of the Bentonite Buffer for the Acceptance Control Procedure in a KBS-3 Repository, Svensk Karn-branslehantering AB Report, 2010. SKB TR-10-60. 
  9. A. Lloret, M.V. Villar, M. Sanchez, A. Gens, X. Pintado, E.E. Alonso, Mechanical behavior of heavily compacted bentonite under high suction changes, Geotechnique 53 (2003) 27-40.  https://doi.org/10.1680/geot.2003.53.1.27
  10. G. Xiang, W. Ye, Y. Xu, F.E. Jalal, Swelling deformation of Na-bentonite in solutions containing different cations, Eng. Geol. 277 (2020), 105757. 
  11. J.O. Lee, H. Choi, J.Y. Lee, Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository, Ann. Nucl. Energy 94 (2016) 848-855.  https://doi.org/10.1016/j.anucene.2016.04.053
  12. W.J. Cho, J.O. Lee, S. Kwon, An empirical model for the thermal conductivity of compacted bentonite and a bentonite-sand mixture, Heat Mass Tran. 47 (11) (2011) 1385-1393.  https://doi.org/10.1007/s00231-011-0800-1
  13. W.J. Cho, J.O. Lee, K.S. Chun, The temperature effects on hydraulic conductivity of compacted bentonite, Appl. Clay Sci. 14 (1999) 47-58.  https://doi.org/10.1016/S0169-1317(98)00047-7
  14. J.O. Lee, K. Brich, H.J. Choi, Coupled hydro analysis of unsaturated buffer and backfill in a high-level waste repository, Ann. Nucl. Energy 72 (2014) 63-75. 
  15. J. Lee, I. Kim, H. Choi, D. Cho, An improved concept of deep geological disposal system considering arising characteristics of spent fuels from domestic nuclear power plants, J. Nucl. Fuel Cycle Waste Technol. 17 (4) (2019) 405-418.  https://doi.org/10.7733/jnfcwt.2019.17.4.405
  16. M. Yoo, H.J. Choi, M.S. Lee, S.Y. Lee, Measurement of properties of domestic bentonite for a buffer of an HLW repository, J. Korean Radioact. Waste Soc. 14 (2) (2016) 135-147.  https://doi.org/10.7733/jnfcwt.2016.14.2.135
  17. J.O. Lee, Y.C. Choi, H.J. Choi, R&D Status on Gap-Filling Materials for the Buffer and Backfill of a HLW Repository, KAERI/AR-1005/2013, 2013. 
  18. P. Marjavaara, H. Kivikoski, Filling the Gap between Buffer and Rock in the Deposition Hole, Working Report 2011-33, Posiva Oy, Eurajoki, 2011. 
  19. B. Kjartanson, D. Dixon, C. Kohle, Placement of Bentonite Pellets to Fill Repository Sealing System Voids and Gaps, Technical Report No. 06819-REP-01200-10136-R00, Ontario Power Generation, 2005. 
  20. J.O. Lee, H.J. Choi, G.Y. Kim, D.K. Cho, Numerical analysis of the effect of gap-filling options on the maximum peak temperature of a buffer in a HLW repository, Prog. Nucl. Energy 111 (2019) 138-149.  https://doi.org/10.1016/j.pnucene.2018.11.007
  21. Y.S. Xu, X.Y. Zhou, D.A. Sun, Z.T. Zeng, Thermal properties of GMZ bentonite pellet mixtures subjected to different temperatures for high-level radioactive waste repository, Acta Geotech. 17 (3) (2022) 981-992.  https://doi.org/10.1007/s11440-021-01244-3
  22. G.J. Lee, S. Yoon, W.J. Cho, Effect of bentonite type on thermal conductivity in a HLW repository, J. Nucl. Fuel Cycle Waste Technol. 19 (3) (2021) 331-338.  https://doi.org/10.7733/jnfcwt.2021.19.3.331
  23. W.J. Cho, Bentonite Barrier Material for Radioactive Waste Disposal, KAERI/GP-5352-2-2019,
  24. I. Bisutii, I. Hilke, M. Raessler, Determination of total organic carbon - an overview of current methods, Trends Anal. Chem. 23 (10-11) (2004) 716-726.  https://doi.org/10.1016/j.trac.2004.09.003
  25. J. Nieuwenhuize, Y.E.M. Maas, J.J. Middelburg, Rapid analysis of organic carbon and nitrogen in particulate materials, Mar. Chem. 45 (1994) 217-224.  https://doi.org/10.1016/0304-4203(94)90005-1
  26. H. Park, Thermal Conductivities of Unsaturated Korean Weathered Granite Soils, Master Thesis, KAIST, 2011. 
  27. ASTM D5334-14, Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure, ASTM International. 
  28. K.L. Bristow, R.D. White, G.J. Klutenberg, Comparison of single and dual probes for measuring soil thermal properties with transient heating, Aust. J. Soil Res. 32 (2011) 447-467. 
  29. COMSOL Inc, COMSOL Multiphysics User's Manual Version COMSOL 5.5, 2019. City, Sate, USA. 
  30. M.J. Kim, S.R. Lee, J.S. Jeon, S. Yoon, Sensitivity analysis of bentonite buffer peak temperature in a high-level waste repository, Ann. Nucl. Energy 123 (2019) 190-199.  https://doi.org/10.1016/j.anucene.2018.09.020
  31. F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer, sixth ed., John Wiley & Sons, City, Country, 2006. 
  32. X.Y. Zhou, L.W. He, D.A. Sun, Three-dimensional thermal modeling and dimensioning design in the nuclear waste repository, Int. J. Numer. Anal. Methods GeoMech. 46 (4) (2022) 779-797.  https://doi.org/10.1002/nag.3321
  33. M.J. Kim, G.J. Lee, S. Yoon, Numerical study on the effect of enhanced buffer materials in a high-level radioactive waste repository, Appl. Sci. 11 (18) (2021) 8733. 
  34. J. Lee, I. Kim, H. Ju, H. Choi, D. Cho, Proposal of an improved concept design for the deep geological disposal system of spent nuclear fuel in Korea, J. Nuclr. Fuel Cycle and Waste Technol. (JNFCWT) 18 (spc) (2020) 1-19.