Acknowledgement
This research was funded by the Basic Research Project (2020R1F1A1072379) and Nuclear Research and Development Program (2021M2E3A2041351) by the National Research Foundation of Korea.
References
- W.Z. Chen, Y.S. Ma, H.D. Yu, F.F. Li, X.L. Li, X. Sillen, Effects of temperature and thermally-induced microstructure change on hydraulic conductivity of Boom clay, J. Rock Mech. Geotech. Eng. 9 (2017) 383-395. https://doi.org/10.1016/j.jrmge.2017.03.006
- L. Zheng, J. Rutqvist, J.T. Birkholzer, H.H. Liu, On the impact of temperature up to 200 ℃ in clay repositories with bentonite engineered barrier system: a study with coupled thermal, hydrological, chemical, and mechanical modeling, Eng. Geol. 197 (2015) 278-295. https://doi.org/10.1016/j.enggeo.2015.08.026
- S. Yoon, G.Y. Kim, Measuring thermal conductivity and water suction for variably saturated bentonite, Nucl. Eng. Technol. 53 (2021) 1041-1048. https://doi.org/10.1016/j.net.2020.08.017
- M. Juvankoski, Buffer Design 2012, Posiva 2012-14, Posiva Oy.
- M.J. Kim, S.R. Lee, S. Yoon, J.S. Jeon, M.S. Kim, Effect of thermal properties of bentonite buffer on temperature variation, J. Korean Geotechn. Soc. 34 (1) (2018) 17-24.
- M.V. Villar, P.L. Martin, J.M. Barcala, Modification of physical, mechanical and hydraulic properties of bentonite by thermo-hydraulic gradients, Eng. Geol. 81 (2006) 284-297.
- D.A. Dixon, M.N. Gray, A.W. Thomas, A study of the compaction properties of potential clay-sand buffer mixtures for use in nuclear fuel waste disposal, Eng. Geol. 21 (1985) 247-255. https://doi.org/10.1016/0013-7952(85)90015-8
- O. Karnland, Chemical and Mineralogical Characterization of the Bentonite Buffer for the Acceptance Control Procedure in a KBS-3 Repository, Svensk Karn-branslehantering AB Report, 2010. SKB TR-10-60.
- A. Lloret, M.V. Villar, M. Sanchez, A. Gens, X. Pintado, E.E. Alonso, Mechanical behavior of heavily compacted bentonite under high suction changes, Geotechnique 53 (2003) 27-40. https://doi.org/10.1680/geot.2003.53.1.27
- G. Xiang, W. Ye, Y. Xu, F.E. Jalal, Swelling deformation of Na-bentonite in solutions containing different cations, Eng. Geol. 277 (2020), 105757.
- J.O. Lee, H. Choi, J.Y. Lee, Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository, Ann. Nucl. Energy 94 (2016) 848-855. https://doi.org/10.1016/j.anucene.2016.04.053
- W.J. Cho, J.O. Lee, S. Kwon, An empirical model for the thermal conductivity of compacted bentonite and a bentonite-sand mixture, Heat Mass Tran. 47 (11) (2011) 1385-1393. https://doi.org/10.1007/s00231-011-0800-1
- W.J. Cho, J.O. Lee, K.S. Chun, The temperature effects on hydraulic conductivity of compacted bentonite, Appl. Clay Sci. 14 (1999) 47-58. https://doi.org/10.1016/S0169-1317(98)00047-7
- J.O. Lee, K. Brich, H.J. Choi, Coupled hydro analysis of unsaturated buffer and backfill in a high-level waste repository, Ann. Nucl. Energy 72 (2014) 63-75.
- J. Lee, I. Kim, H. Choi, D. Cho, An improved concept of deep geological disposal system considering arising characteristics of spent fuels from domestic nuclear power plants, J. Nucl. Fuel Cycle Waste Technol. 17 (4) (2019) 405-418. https://doi.org/10.7733/jnfcwt.2019.17.4.405
- M. Yoo, H.J. Choi, M.S. Lee, S.Y. Lee, Measurement of properties of domestic bentonite for a buffer of an HLW repository, J. Korean Radioact. Waste Soc. 14 (2) (2016) 135-147. https://doi.org/10.7733/jnfcwt.2016.14.2.135
- J.O. Lee, Y.C. Choi, H.J. Choi, R&D Status on Gap-Filling Materials for the Buffer and Backfill of a HLW Repository, KAERI/AR-1005/2013, 2013.
- P. Marjavaara, H. Kivikoski, Filling the Gap between Buffer and Rock in the Deposition Hole, Working Report 2011-33, Posiva Oy, Eurajoki, 2011.
- B. Kjartanson, D. Dixon, C. Kohle, Placement of Bentonite Pellets to Fill Repository Sealing System Voids and Gaps, Technical Report No. 06819-REP-01200-10136-R00, Ontario Power Generation, 2005.
- J.O. Lee, H.J. Choi, G.Y. Kim, D.K. Cho, Numerical analysis of the effect of gap-filling options on the maximum peak temperature of a buffer in a HLW repository, Prog. Nucl. Energy 111 (2019) 138-149. https://doi.org/10.1016/j.pnucene.2018.11.007
- Y.S. Xu, X.Y. Zhou, D.A. Sun, Z.T. Zeng, Thermal properties of GMZ bentonite pellet mixtures subjected to different temperatures for high-level radioactive waste repository, Acta Geotech. 17 (3) (2022) 981-992. https://doi.org/10.1007/s11440-021-01244-3
- G.J. Lee, S. Yoon, W.J. Cho, Effect of bentonite type on thermal conductivity in a HLW repository, J. Nucl. Fuel Cycle Waste Technol. 19 (3) (2021) 331-338. https://doi.org/10.7733/jnfcwt.2021.19.3.331
- W.J. Cho, Bentonite Barrier Material for Radioactive Waste Disposal, KAERI/GP-5352-2-2019,
- I. Bisutii, I. Hilke, M. Raessler, Determination of total organic carbon - an overview of current methods, Trends Anal. Chem. 23 (10-11) (2004) 716-726. https://doi.org/10.1016/j.trac.2004.09.003
- J. Nieuwenhuize, Y.E.M. Maas, J.J. Middelburg, Rapid analysis of organic carbon and nitrogen in particulate materials, Mar. Chem. 45 (1994) 217-224. https://doi.org/10.1016/0304-4203(94)90005-1
- H. Park, Thermal Conductivities of Unsaturated Korean Weathered Granite Soils, Master Thesis, KAIST, 2011.
- ASTM D5334-14, Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure, ASTM International.
- K.L. Bristow, R.D. White, G.J. Klutenberg, Comparison of single and dual probes for measuring soil thermal properties with transient heating, Aust. J. Soil Res. 32 (2011) 447-467.
- COMSOL Inc, COMSOL Multiphysics User's Manual Version COMSOL 5.5, 2019. City, Sate, USA.
- M.J. Kim, S.R. Lee, J.S. Jeon, S. Yoon, Sensitivity analysis of bentonite buffer peak temperature in a high-level waste repository, Ann. Nucl. Energy 123 (2019) 190-199. https://doi.org/10.1016/j.anucene.2018.09.020
- F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer, sixth ed., John Wiley & Sons, City, Country, 2006.
- X.Y. Zhou, L.W. He, D.A. Sun, Three-dimensional thermal modeling and dimensioning design in the nuclear waste repository, Int. J. Numer. Anal. Methods GeoMech. 46 (4) (2022) 779-797. https://doi.org/10.1002/nag.3321
- M.J. Kim, G.J. Lee, S. Yoon, Numerical study on the effect of enhanced buffer materials in a high-level radioactive waste repository, Appl. Sci. 11 (18) (2021) 8733.
- J. Lee, I. Kim, H. Ju, H. Choi, D. Cho, Proposal of an improved concept design for the deep geological disposal system of spent nuclear fuel in Korea, J. Nuclr. Fuel Cycle and Waste Technol. (JNFCWT) 18 (spc) (2020) 1-19.