DOI QR코드

DOI QR Code

Effect of different voxel sizes on the accuracy of CBCT measurements of trabecular bone microstructure: A comparative micro-CT study

  • Tayman, Mahmure Ayse (Department of Periodontology, Faculty of Dentistry, Ankara Yildirim Beyazit University) ;
  • Kamburoglu, Kivanc (Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University) ;
  • Ocak, Mert (Department of Basic Medical Sciences-Anatomy, Faculty of Dentistry, Ankara University) ;
  • Ozen, Dogukan (Department of Biostatistics, Faculty of Veterinary Medicine, Ankara University)
  • Received : 2022.02.03
  • Accepted : 2022.04.02
  • Published : 2022.06.30

Abstract

Purpose: The aim of this study was to assess the accuracy of cone-beam computed tomographic (CBCT) images obtained using different voxel sizes in measuring trabecular bone microstructure in comparison to micro-CT. Materials and Methods: Twelve human skull bones containing posterior-mandibular alveolar bone regions were analyzed. CBCT images were obtained at voxel sizes of 0.075mm(high: HI) and 0.2mm(standard: Std), while microCT imaging used voxel sizes of 0.06 mm (HI) and 0.12 mm (Std). Analyses were performed using CTAn software with the standardized automatic global threshold method. Intraclass correlation coefficients were used to evaluate the consistency and agreement of paired measurements for bone volume (BV), percent bone volume (BV/TV), bone surface (BS), trabecular thickness (TbTh), trabecular separation (TbSp), trabecular number (TbN), trabecular pattern factor(TbPf), and structure model index (SMI). Results: When compared to micro-CT, CBCT images had higher BV, BV/TV, and TbTh values, while micro-CT images had lower BS, TbSp, TbN, TbPf, and SMI values (P<0.05). The BV, BV/BT, TbTh, and TbSp variables were higher with Std voxels, whereas the BS, TbPf, and SMI variables were higher with HI voxels for both imaging methods. For each imaging modality and voxel size evaluated, BV, BS, and TbTh were significantly different(P<0.05). TbN, TbPf, and SMI showed statistically significant differences between imaging methods(P<0.05). The consistency and absolute agreement between micro-CT and CBCT were excellent for all variables. Conclusion: This study demonstrated the potential of high-resolution CBCT imaging for quantitative bone morphometry assessment.

Keywords

References

  1. Fuh LJ, Huang HL, Chen CS, Fu KL, Shen YW, Tu MG, et al. Variations in bone density at dental implant sites in different regions of the jawbone. J Oral Rehabil 2010; 37: 346-51. https://doi.org/10.1111/j.1365-2842.2010.02061.x
  2. Lioubavina-Hack N, Lang NP, Karring T. Significance of primary stability for osseointegration of dental implants. Clin Oral Implants Res 2006; 17: 244-50. https://doi.org/10.1111/j.1600-0501.2005.01201.x
  3. Fyhrie DP. Summary - measuring "bone quality". J Musculoskelet Neuronal Interact 2005; 5: 318-20.
  4. Ozan O, Turkyilmaz I, Yilmaz B. A preliminary report of patients treated with early loaded implants using computerized tomographyguided surgical stents: flapless versus conventional flapped surgery. J Oral Rehabil 2007; 34: 835-40. https://doi.org/10.1111/j.1365-2842.2007.01772.x
  5. Muller R. Bone microarchitecture assessment: current and future trends. Osteoporos Int 2003; 14 Suppl 5: S89-95.
  6. Diederichs G, Link TM, Kentenich M, Schwieger K, Huber MB, Burghardt AJ, et al. Assessment of trabecular bone structure of the calcaneus using multi-detector CT: correlation with microCT and biomechanical testing. Bone 2009; 44: 976-83. https://doi.org/10.1016/j.bone.2009.01.372
  7. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 1983; 72: 1396-409. https://doi.org/10.1172/JCI111096
  8. Muller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, et al. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 1998; 23: 59-66. https://doi.org/10.1016/S8756-3282(98)00068-4
  9. Hsu JT, Chen YJ, Tsai MT, Lan HHC, Cheng FC, Chen MY, et al. Predicting cortical bone strength from DXA and dental conebeam CT. PLoS One 2012; 7: e50008. https://doi.org/10.1371/journal.pone.0050008
  10. Benavides E, Rios HF, Ganz SD, An CH, Resnik R, Reardon GT, et al. Use of cone beam computed tomography in implant dentistry: the International Congress of Oral Implantologists consensus report. Implant Dent 2012; 21: 78-86. https://doi.org/10.1097/ID.0b013e31824885b5
  11. Nackaerts O, Maes F, Yan H, Couto Souza P, Pauwels R, Jacobs R. Analysis of intensity variability in multislice and cone beam computed tomography. Clin Oral Implants Res 2011; 22: 873-9. https://doi.org/10.1111/j.1600-0501.2010.02076.x
  12. Gonzalez-Garcia R, Monje F. The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro-CT. Clin Oral Implants Res 2013; 24: 871-9. https://doi.org/10.1111/j.1600-0501.2011.02390.x
  13. Kothari M, Keaveny TM, Lin JC, Newitt DC, Genant HK, Majumdar S. Impact of spatial resolution on the prediction of trabecular architecture parameters. Bone 1998; 22: 437-43. https://doi.org/10.1016/S8756-3282(98)00031-3
  14. Issever AS, Link TM, Kentenich M, Rogalla P, Burghardt AJ, Kazakia GJ, et al. Assessment of trabecular bone structure using MDCT: comparison of 64- and 320- slice CT using HR-pQCT as the reference standard. Eur Radiol 2010; 20: 458-68. https://doi.org/10.1007/s00330-009-1571-7
  15. Naitoh M, Katsumata A, Mitsuya S, Kamemoto H, Ariji E. Measurement of mandibles with microfocus X-ray computerized tomography and compact computerized tomography for dental use. Int J Oral Maxillofac Implants 2004; 19: 239-46.
  16. Lou L, Lagravere MO, Compton S, Major PW, Flores-Mir C. Accuracy of measurements and reliability of landmark identification with computed tomography (CT) techniques in the maxillofacial area: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 104: 402-11. https://doi.org/10.1016/j.tripleo.2006.07.015
  17. Liu S, Zhang ZY, Li JP, Liu DG, Ma XC. A study of trabecular bone structure in the mandibular condyle of healthy young people by cone beam computed tomography. Zhonghua Kou Qiang Yi Xue Za Zhi 2007; 42: 357-60.
  18. Corpas Ldos S, Jacobs R, Quirynen M, Huang Y, Naert I, Duyck J. Peri-implant bone tissue assessment by comparing the outcome of intra-oral radiograph and cone beam computed tomography analyses to the histological standard. Clin Oral Implants Res 2011; 22: 492-9. https://doi.org/10.1111/j.1600-0501.2010.02029.x
  19. Hua Y, Nackaerts O, Duyck J, Maes F, Jacobs R. Bone quality assessment based on cone beam computed tomography imaging. Clin Oral Implants Res 2009; 20: 767-71. https://doi.org/10.1111/j.1600-0501.2008.01677.x
  20. Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol 2011; 40: 265-73. https://doi.org/10.1259/dmfr/30642039
  21. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Erlbaum; 1988. p. 285-7.
  22. Waarsing JH, Day JS, Weinans H. An improved segmentation method for in vivo microCT imaging. J Bone Miner Res 2004; 19: 1640-50. https://doi.org/10.1359/jbmr.040705
  23. Bohner L, Tortamano P, Gremse F, Chilvarquer I, Kleinheinz J, Hanisch M. Assessment of trabecular bone during dental implant planning using cone-beam computed tomography with high-resolution parameters. Open Dent J 2021; 15: 57-63. https://doi.org/10.2174/1874210602115010057
  24. Vandenberghe B, Luchsinger S, Hostens J, Dhoore E, Jacobs R, SEDENTEXCT Project Consortium. The influence of exposure parameters on jawbone model accuracy using cone beam CT and multislice CT. Dentomaxillofac Radiol 2012; 41: 466-74. https://doi.org/10.1259/dmfr/81272805
  25. Kang SR, Bok SC, Choi SC, Lee SS, Heo MS, Huh KH, et al. The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography. J Periodontal Implant Sci 2016; 46: 116-27. https://doi.org/10.5051/jpis.2016.46.2.116
  26. Ibrahim N, Parsa A, Hassan B, van der Stelt P, Aartman IH, Wismeijer D. Accuracy of trabecular bone microstructural measurement at planned dental implant sites using cone-beam CT datasets. Clin Oral Implants Res 2014; 25: 941-5. https://doi.org/10.1111/clr.12163
  27. Kim JE, Yi WJ, Heo MS, Lee SS, Choi SC, Huh KH. Three-dimensional evaluation of human jaw bone microarchitecture: correlation between the microarchitectural parameters of cone beam computed tomography and micro-computer tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120: 762-70. https://doi.org/10.1016/j.oooo.2015.08.022
  28. Panmekiate S, Ngonphloy N, Charoenkarn T, Faruangsaeng T, Pauwels R. Comparison of mandibular bone microarchitecture between micro-CT and CBCT images. Dentomaxillofac Radiol 2015; 44: 20140322. https://doi.org/10.1259/dmfr.20140322
  29. Parsa A, Ibrahim N, Hassan B, van der Stelt P, Wismeijer D. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clin Oral Implants Res 2015; 26: e1-7. https://doi.org/10.1111/clr.12678
  30. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 1987; 2: 595-610. https://doi.org/10.1002/jbmr.5650020617
  31. Naitoh M, Hirukawa A, Katsumata A, Ariji E. Prospective study to estimate mandibular cancellous bone density using large volume cone-beam computed tomography. Clin Oral Implants Res 2010; 21: 1309-13. https://doi.org/10.1111/j.1600-0501.2010.01950.x
  32. Kulah K, Gulsahi A, Kamburoglu K, Geneci F, Ocak M, Celik HH, et al. Evaluation of maxillary trabecular microstructure as an indicator of implant stability by using 2 cone beam computed tomography systems and micro-computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 127: 247-56. https://doi.org/10.1016/j.oooo.2018.11.014
  33. Van Dessel J, Huang Y, Depypere M, Rubira-Bullen I, Maes F, Jacobs R. A comparative evaluation of cone beam CT and micro-CT on trabecular bone structures in the human mandible. Dentomaxillofac Radiol 2013; 42: 20130145. https://doi.org/10.1259/dmfr.20130145
  34. Monje A, Monje F, Gonzalez-Garcia R, Galindo-Moreno P, Rodriguez-Salvanes F, Wang HL. Comparison between microcomputed tomography and cone-beam computed tomography radiologic bone to assess atrophic posterior maxilla density and microarchitecture. Clin Oral Implants Res 2014; 25: 723-8. https://doi.org/10.1111/clr.12133
  35. Pauwels R, Faruangsaeng T, Charoenkarn T, Ngonphloy N, Panmekiate S. Effect of exposure parameters and voxel size on bone structure analysis in CBCT. Dentomaxillofac Radiol 2015; 44: 20150078. https://doi.org/10.1259/dmfr.20150078
  36. Chappard D, Retailleau-Gaborit N, Legrand E, Basle MF, Audran M. Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res 2005; 20: 1177-84. https://doi.org/10.1359/jbmr.050205
  37. de Oliveira RC, Leles CR, Lindh C, Ribeiro-Rotta RF. Bone tissue microarchitectural characteristics at dental implant sites. Part 1: identification of clinical-related parameters. Clin Oral Implants Res 2012; 23: 981-6. https://doi.org/10.1111/j.1600-0501.2011.02243.x
  38. Aranyarachkul P, Caruso J, Gantes B, Schulz E, Riggs M, Dus I, et al. Bone density assessments of dental implant sites: 2. Quantitative cone-beam computerized tomography. Int J Oral Maxillofac Implants 2005; 20: 416-24.
  39. Araki K, Okano T. The effect of surrounding conditions on pixel value of cone beam computed tomography. Clin Oral Implants Res 2013; 24: 862-5. https://doi.org/10.1111/j.1600-0501.2011.02373.x
  40. Kamburoglu K, Murat S, Kolsuz E, Kurt H, Yuksel S, Paksoy C. Comparative assessment of subjective image quality of cross-sectional cone-beam computed tomography scans. J Oral Sci 2011; 53: 501-8. https://doi.org/10.2334/josnusd.53.501
  41. Davies J, Johnson B, Drage N. Effective doses from cone beam CT investigation of the jaws. Dentomaxillofac Radiol 2012; 41: 30-6. https://doi.org/10.1259/dmfr/30177908
  42. Hassan B, Couto Souza P, Jacobs R, de Azambuja Berti S, van der Stelt P. Influence of scanning and reconstruction parameters on quality of three-dimensional surfaces models of the dental arches from cone beam computed tomography. Clin Oral Investig 2010; 14: 303-10. https://doi.org/10.1007/s00784-009-0291-3
  43. Spin-Neto R, Gotfredsen E, Wenzel A. Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systemic review. J Digit Imaging 2013; 26: 813-20. https://doi.org/10.1007/s10278-012-9562-7
  44. De Vos W, Casselman J, Swennen GR. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg 2009; 38: 609-25. https://doi.org/10.1016/j.ijom.2009.02.028
  45. Misch CE. Bone classification, training keys to implant success. Dent Today 1989; 8: 39-44.