Acknowledgement
본 연구 논문은 과학기술정보통신부 및 정보통신기획평가원의 출연금으로 수행되고 있는 한국전자통신연구원 "기계를 위한 영상 부호화 기술 개발"(2020-0-00011)의 연구결과입니다.
References
- ISO/IEC 23090-3, "2021 Information technology - Coded representation of immersive media - Part 3:Versatile video Coding" https://www.iso.org/standard/73022.html
- ISO/IEC JTC 1/SC 29/WG 2, "Common Test Conditions and Evaluation Methodology for Video Coding for Machines," the 137th MPEG meeting, January 2022. https://dms.mpeg.expert/doc_end_user/documents/137_OnLine/wg11/MDS21288_WG02_N00163.zip
- Free FLIR Thermal dataset, https://www.flir.com/oem/adas/dataset/ (accessed Jan, 8, 2020).
- X. Xu, S. Liu and Z. Li, "Tencent Video Dataset (TVD): A Video Dataset for Learning-based Visual Data Compression and Analysis", arXiv:2105.05961, May 2021. doi: https://doi.org/10.48550/arXiv.2105.05961
- Open Images V6, https://storage.googleapis.com/openimages/web/index. html (accessed Mar, 1, 2020)
- T. Takehiro, H. Choi, and I. V. Bajic. "SFU-HW-Tracks-v1: Object Tracking Dataset on Raw Video Sequences." arXiv preprint arXiv:2112.14934 , 2021. doi: https://doi.org/10.48550/arXiv.2112.14934
- ISO/IEC JTC 1/SC 29/WG 2, "Call for Evidence for Video Coding for Machines", the 133rd MPEG meeting, January 2021. https://dms.mpeg.expert/doc_end_user/documents/133_OnLine/wg11/MDS20126_WG02_N00042.zip
- B. Zhu, L. Yu, D. Li and Y. Pan, "[VCM] ZJU response to cfe: deep learning-based compression for machine vision ", the 134th MPEG meeting, April 2021. https://dms.mpeg.expert/doc_end_user/documents/134_OnLine/wg11/m56445-v3-m56445[VCM]ZJUresponsetocfe.zip
- Y. Lee, S. Kim, K. Yoon, H. Lim, H. Choo, W. Cheong and J. Seo, "[VCM] Response to CfE: Object detection results with the FLIR dataset," the 134th MPEG meeting, April 2021. https://dms.mpeg.expert/doc_end_user/documents/134_OnLine/wg11/m56572-v1-m56572_v2.zip
- S. Ren, K. He, R. Girshick and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks," Advances in neural information processing systems, 28, 2015. https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
- VTM 12.0/VVCSoftware_VTM, https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-12.0 (accessed April, 1, 2021) https://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.pdf
- T. Y. Lin, P. Dollar, R. Girshick, He, B. Hariharan and S. Belongie, "Feature pyramid networks for object detection," In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.2117-2125, 2017. https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf
- K. He, G. Gkioxari, P. Dollar and R. Girshick, "Mask r-cnn," In Proceedings of the IEEE international conference on computer vision, pp. 2961-2969, 2017. https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48
- W. Gao, X. Xu, S. Liu and M. Qin, "[VCM] TVD dataset for Object Segmentation", the 135th MPEG meeting, July 2021.
- W. Gao, X. Xu and S. Liu "[VCM] Updated anchor results for object detection using TVD dataset", the 135th MPEG meeting, July 2021.
- T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D and Zitnick, C. L, "Microsoft coco: Common objects in context," In European conference on computer vision, Springer, Cham, pp. 740-755, 2014.