과제정보
이 논문은 2022년도 광운대학교 교내학술연구비 지원 및 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(NRF-2021R1A2C2092848)의 지원을 받아 작성되었습니다.
참고문헌
- Y. LeCun, Y. Bengio, G. E. Hinton, "Deep learning," Nature, vol. 512, pp. 436-444, 2015. doi: https://doi.org/10.1038/nature14539
- M. F. Mahmood, N. Hussin, "Information in conversion era: Impact and influence from 4th industrial revolution," International Journal of Academic Research in Business and Social Sciences, Vol.8, No.9, pp. 320-328, 2018. doi: https://doi.org/10.6007/IJARBSS/v8-i9/4594
- G. Sullivan, J. Ohm, W. Han, and T. Wiegand, "Overview of the high efficiency video coding (HEVC) standard," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 22, No. 12, pp. 1649-1668, Dec. 2012. doi: https://doi.org/10.1109/TCSVT.2012.2221191
- B. Bross, Y. K. Wang, Y. Ye, S. Liu, J. Chen, "Overview of the versatile video coding (VVC) standard and its applications," IEEE Transactions on Circuits and Systems for Video Technology, Vol 31, No 10, pp. 3736-3764, 2021. doi: https://doi.org/10.1109/TCSVT.2021.3101953
- S. Wang, Z. Wang, Y. Ye, S. Wang, "[VCM] Investigation on feature map layer selection for object detection and compression," ISO/IEC JTC 1/SC 29/WG 2, m55787, Online, Dec. 2020.
- Vedeo Coding for Machines, https://mpeg.chiariglione.org/standards/exploration/video-coding-machines (accessed July. 2019).
- VTM12.0, https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-12.0 (accessed Nov. 26, 2021).
- Y. Lee, S., K. Yoon, H. Lim, H. Choo, W. Cheong, J. Seo, "[VCM] Updated FLIR Anchor results for object detection," ISO/IEC JTC 1/SC29/WG 2, m57375, Online, Jul. 2021.
- S. Wang, Z. Wang, Y. Ye, S. Wang, "[VCM] End-to-end image compression towards machine vision for object detection," ISO/IEC JTC 1/SC 29/WG 2, m57500, Online, Jul. 2021.
- M. Lee, H. Choi, S. Park, M. Kim, "[VCM] A feature map compression based on optimal transformation with VVC and DeepCABAC for VCM," ISO/IEC JTC 1/SC 29/WG 2, m58022, Online, October. 2021.
- D. Gwak, C. Kim, J. Lim, "[VCM track 1] Feature data compression based on generalized PCA for object detection," ISO/IEC JTC 1/SC 29/WG 2, m58785, Online, Jan. 2022.
- T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie, "Feature pyramid networks for object detection." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117-2125, July. 2017. doi: https://doi.org/10.48550/arXiv.1612.03144
- S. Wiedemann et al., "DeepCABAC: A universal compression algorithm for deep neural networks," IEEE J. Sel. Topics Signal Process., Vol. 14, No. 4, pp. 700-714, May 2020. doi: https://doi.org/10.1109/JSTSP.2020.2969554
- COCO2017 validation set, https://cocodataset.org/#download (accessed Nov. 26, 2021).
- G. Bjontegaard, "Calculation of average PSNR differences between RDcurves," Tech. Rep. VCEGM33, Video Coding Experts Group (VCEG), 2001. doi: https://doi.org/10.3169/itej.67.529
- K. He, X. Zhang, S. Ren, J. Sun, "Deep Residual Learning for Image Recognition," Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, June. 2016. doi: https://doi.org/10.1109/cvpr.2016.90
- S. Xie, R. Girshick, P. Dollar, Z. Tu, K. He, "Aggregated Residual Transformations for Deep Neural Networks," arXiv, 2017. doi: https://doi.org/10.1109/cvpr.2017.634
- Detectron2, https://github.com/facebookresearch/detectron2 (accessed 2019).
- V. Nair, G. E. Hinton, "Rectified linear units improve restricted boltzmann machines," International Conference on Machine Learning, June. 2010. doi:https://dl.acm.org/doi/10.5555/3104322.3104425
- J. Balle, V. Laparra, E. P. Simoncelli, "Density modeling of images using a generalized normalization transformation," In 4th International Conference on Learning Representations, May. 2016. doi: https://doi.org/10.48550/arXiv.1511.06281
- J. Balle, V. Laparra, E. P. Simoncelli, "End-to-end optimized image compression," In 5th International Conference on Learning Representations, May. 2017. doi: https://doi.org/10.48550/arXiv.1611.01704
- K. Ma, W. Liu, K. Zhang, Z. Duanmu, Z. Wang, W. Zuo, "End-to-end blind image quality assessment using deep neural networks," IEEE Transactions on Image Processing, Vol.27, No.3, pp. 1202-1213, 2017. doi: https://doi.org/10.1109/tip.2017.2774045
- J. Lee, S. Cho, H. Y. Kim, J. S. Choi, "A study on nonlinear transform layers in neural networks for image compression," In Proceedings of the Korean Society of Broadcast Engineers Conference, The Korean Institute of Broadcast and Media Engineers, pp. 267-269, 2018. doi: https://www.koreascience.or.kr/article/CFKO201815540966800
- J. Balle, P. A. Chou, D. Minnen, S. Singh, N. Johnston, E. Agustsson, G. Toderici, "Nonlinear transform coding," IEEE Journal of Selected Topics in Signal Processing, Vol.15, No.2, pp. 339-353, 2021. doi: https://doi.org/10.1109/JSTSP.2020.3034501
- S. Ren, K. He, R. Girshick, J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," Advances in Neural Information Processing Systems, pp. 91-99, 2015. doi: https://doi.org/10.1109/tpami.2016.2577031