DOI QR코드

DOI QR Code

Nonlocal thermal vibrations of embedded nanoplates in a viscoelastic medium

  • Zenkour, Ashraf M. (Department of Mathematics, Faculty of Science, King Abdulaziz University)
  • 투고 : 2022.01.28
  • 심사 : 2022.03.17
  • 발행 : 2022.06.25

초록

The nonlocal elasticity as well as Mindlin's first-order shear deformation plate theory are proposed to investigate thermal vibrational of a nanoplate placing on a three-factor foundation. The Winkler-Pasternak elastic foundation is connected with the viscous damping to obtain the present three-parameter viscoelastic model. Differential equations of motion are derived and resolved for simply-supported nanoplates to get their natural frequencies. The influences of the nonlocal index, viscous damping index, and temperature changes are investigated. A comparison example is dictated to validate the precision of present results. Effects of other factors such as aspect ratio, mode numbers, and foundation parameters are discussed carefully for the vibration problem. Additional thermal vibration results of nanoplates resting on the viscoelastic foundation are presented for comparisons with future investigations.

키워드

과제정보

This work was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (130-77-D1438). The author, therefore, acknowledges with thanks DSR for technical and financial support.

참고문헌

  1. Aksencer, T. and Aydogdu, M. (2012), "Forced transverse vibration of nanoplates using nonlocal elasticity", Phys. E, 44(7-8), 1752-1759. https://doi.org/10.1016/j.physe.2011.12.004.
  2. Alazwari, M.A. and Zenkour, A.M. (2022), "A quasi-3D refined theory for the vibration of functionally graded plates resting on visco-Winkler-Pasternak foundations", Math., 10, 716. https://doi.org/10.3390/math10050716.
  3. Ansari, R., Shahabodini, A. and Shojaei, M.F. (2016), "Nonlocal three-dimensional theory of elasticity with application to free vibration of functionally graded nanoplates on elastic foundations", Phys. E, 76, 70-81. https://doi.org/10.1016/j.physe.2015.09.042.
  4. Arefi, M. and Zenkour, A.M. (2017), "Size-dependent free vibration and dynamic analyses of piezo-electromagnetic sandwich nanoplates resting on viscoelastic foundation", Phys. B, 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066.
  5. Behera, L. and Chakraverty, S. (2016), "Effect of scaling effect parameters on the vibration characteristics of nanoplates", J. Vib. Control, 22(10), 2389-2399. https://doi.org/10.1177/1077546314547376.
  6. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  7. Chakraverty, S. and Behera, L. (2014), "Free vibration of rectangular nanoplates using Rayleigh-Ritz method", Phys. E, 56, 357-363. https://doi.org/10.1016/j.physe.2013.08.014.
  8. Daikh, A.A., Drai, A., Bensaid, I., Houari, M.S.A. and Tounsi, A. (2021), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sand. Struct. Mater., 23(6), 2217-2244. https://doi.org/10.1177/1099636220909790.
  9. Daneshmehr, A., Rajabpoor, A. and Hadi, A. (2015), "Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories", Int. J. Eng. Sci., 95, 23-35. https://doi.org/10.1016/j.ijengsci.2015.05.011.
  10. Ebrahimi, F. and Hosseini, S.H.S. (2016), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684.
  11. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Verlag, New York.
  12. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  13. Fan, J., Rong, D., Zhou, Z., Xu, C. and Xu, X. (2019), "Exact solutions for forced vibration of completely free orthotropic rectangular nanoplates resting on viscoelastic foundation", Eur. J. Mech./A Solid., 73, 22-33. https://doi.org/10.1016/j.euromechsol.2018.06.007.
  14. Fattahi, A.M., Safaei, B. and Moaddab, E. (2019), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281.
  15. Hosseini-Hashemi, S., Zare, M. and Nazemnezhad, R. (2013), "An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity", Compos. Struct., 100, 290-299. https://doi.org/10.1016/j.compstruct.2012.11.035.
  16. Hosseini, M., Jamalpoor, A. and Bahreman, M. (2016), "Small-scale effects on the free vibrational behavior of embedded viscoelastic double-nanoplate-systems under thermal environment", Acta Astronautica, 129, 400-409. https://doi.org/10.1016/j.actaastro.2016.10.001.
  17. Hosseini, M., Mofidi, M.R., Jamalpoor, A. and Safi Jahanshahi, M. (2018), "Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory", Microsys. Technol., 24, 2295-2316. https://doi.org/10.1007/s00542-017-3654-8.
  18. Jomehzadeh, E. and Saidi, A.R. (2011), "Decoupling the nonlocal elasticity equations for three dimensional vibration analysis of nano-plates", Compos. Struct., 93, 1015-1020. https://doi.org/10.1016/j.compstruct.2010.06.017.
  19. Jomehzadeh, E. and Saidi, A.R. (2012), "Study of small scale effect on nonlinear vibration of nano-plates", J. Comput. Theor. Nanosci., 9, 864-871. https://doi.org/10.1007/s10409-014-0072-3.
  20. Karlicic, D., Cajic, M., Kozic, P. and Pavlovic, I. (2015), "Temperature effects on the vibration and stability behavior of multi-layered graphene sheets embedded in an elastic medium", Compos. Struct., 131, 672-681. https://doi.org/10.1016/j.compstruct.2015.05.058.
  21. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory", Acta Mechanica Sinica, 30, 516-525. https://doi.org/10.1007/s10409-014-0072-3.
  22. Kouider, D., Kaci, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi A., Tounsi, A. and Hussain, M. (2021), "An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core", Steel Compos. Struct., 41(2), 167-191. https://doi.org/10.12989/scs.2021.41.2.167.
  23. Li, Y., Cai, Z. and Shi, S. (2014), "Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory", Compos. Struct., 111, 522-529. https://doi.org/10.1016/j.compstruct.2014.01.033.
  24. Liu, C., Ke, L.L., Yang, J., Kitipornchai, S. and Wang, Y.S. (2018), "Nonlinear vibration of piezoelectric nanoplates using nonlocal Mindlin plate theory", Mech. Adv. Mater. Struct., 25(15-16), 1252-1264. https://doi.org/10.1080/15376494.2016.1149648.
  25. Malekzadeh, P. and Shojaee, M. (2013), "Free vibration of nanoplates based on a nonlocal two-variable refined plate theory", Compos. Struct., 95, 443-452. https://doi.org/10.1016/j.compstruct.2012.07.006.
  26. Malekzadeh, P. and Shojaee, M. (2015), "A two-variable first-order shear deformation theory coupled with surface and nonlocal effects for free vibration of nanoplates", J. Vib. Control, 21(14), 2755-2772. https://doi.org/10.1177/1077546313516667.
  27. Malekzadeh, P., Setoodeh, A.R. and Alibeygi Beni, A. (2011), "Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates", Compos. Struct., 93, 1631-1639. https://doi.org/10.1016/j.compstruct.2011.01.008.
  28. Murmu, T. and Pradhan, S. (2009a), "Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model". Phys. E, 41, 1628-1633. https://doi.org/10.1016/j.physe.2009.05.013.
  29. Murmu, T. and Pradhan, S. (2009b), "Vibration analysis of nanoplates under uniaxial prestressed conditions via nonlocal elasticity", J. Appl. Phys., 106, 104301. https://doi.org/10.1063/1.3233914.
  30. Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
  31. Nematollahi, M.S., Mohammadi, H. and Nematollahi, M.A. (2017), "Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach", Superlt. Microstruct., 111, 944-959. https://doi.org/10.1016/j.spmi.2017.07.055.
  32. Panyatong, M., Chinnaboon, B. and Chucheepsakul, S. (2016), "Free vibration analysis of FG nanoplates embedded in elastic medium based on second-order shear deformation plate theory and nonlocal elasticity", Compos Struct., 153, 428-441. https://doi.org/10.1016/j.compstruct.2016.06.045.
  33. Pouresmaeeli, S., Fazelzadeh, S. and Ghavanloo, E. (2012), "Exact solution for nonlocal vibration of double-orthotropic nanoplates embedded in elastic medium", Compos. B, 43(8), 3384-3390. https://doi.org/10.1016/j.compositesb.2012.01.046.
  34. Pouresmaeeli, S., Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium", Compos. Struct., 96, 405-410. https://doi.org/10.1016/j.compstruct.2012.08.051.
  35. Pradhan, S.C. and Kumar, A. (2010), "Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method", Comput. Mater. Sci., 50(1), 239-245. https://dx.doi.org/10.1016/j.commatsci.2010.08.009.
  36. Pradhan, S.C. and Kumar, A. (2011), "Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method", Compos. Struct., 93, 774-779. https://doi.org/10.1016/j.compstruct.2010.08.004.
  37. Pradhan, S.C. and Phadikar, J.K. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325, 206-223. https://doi.org/10.1016/j.jsv.2009.03.007.
  38. Prasanna Kumar, T.J., Narendar, S. and Gopalakrishnan, S. (2013), "Thermal vibration analysis of monolayer graphene embedded in elastic medium based on nonlocal continuum mechanics", Compos. Struct., 100, 332-342. https://doi.org/10.1016/j.compstruct.2012.12.039.
  39. Rajabi, K. and Hosseini-Hashemi, S. (2017), "Size-dependent free vibration analysis of first-order shear-deformable orthotropic nanoplates via the nonlocal strain gradient theory", Mater. Res. Exp., 4(7), 075054. https://doi.org/10.1088/2053-1591/aa7e69.
  40. Sari, M.S., Al-Rbai, M. and Qawasmeh, B.R. (2018), "Free vibration characteristics of functionally graded Mindlin nanoplates resting on variable elastic foundations using the nonlocal elasticity theory", Adv. Mech. Eng., 10(12), 1-17. https://doi.org/10.1177/1687814018813458.
  41. Satish, N., Narendar, S. and Brahma Raju, K. (2017), "Magnetic field and surface elasticity effects on thermal vibration properties of nanoplates", Compos. Struct., 180, 568-580. https://doi.org/10.1016/j.compstruct.2017.08.028.
  42. Satish, N., Narendar, S. and Gopalakrishnan, S. (2012), "Thermal vibration analysis of orthotropic nanoplates based on nonlocal continuum mechanics", Phys. E, 44, 1950-1962. https://doi.org/10.1016/j.physe.2012.05.024.
  43. Shakouri, A., Ng, T.Y. and Lin, R.M. (2011), "Nonlocal plate model for the free vibration analysis of nanoplates with different boundary conditions", J. Comput. Theor. Nanosci., 8, 2118-2128. https://doi.org/10.1166/jctn.2011.1934.
  44. Shen, Z.B., Tang, H.L., Li, D.K. and Tang, G.J. (2012), "Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory", Comput. Mater. Sci., 61, 200-205. https://dx.doi.org/10.1016/j.commatsci.2012.04.003.
  45. Si, H., Shen, D., Xia, J. and Tahouneh, V. (2020), "Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers", Steel Compos. Struct., 36(1), 1-16. https://doi.org/10.12989/scs.2020.36.1.001.
  46. Sobhy, M. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations", Steel Compos. Struct., 33(2), 195-208. https://doi.org/10.12989/scs.2019.33.2.195.
  47. Wu, C.P. and Hu, H.X. (2021), "A review of dynamic analyses of single- and multi-layered graphene sheets/nanoplates using various nonlocal continuum mechanics-based plate theories", Acta Mechanica, 232, 4497-4531. https://doi.org/10.1007/s00707-021-03068-4.
  48. Wu, C.P. and Li, W.C. (2017), "Free vibration analysis of embedded single-layered nanoplates and graphene sheets by using the multiple time scale method", Comput. Math. Appl., 73(5), 838-854. https://doi.org/10.1016/j.camwa.2017.01.014.
  49. Wu, C.P. and Yu, J.J. (2019), "A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen's nonlocal elasticity theory", Arch. Appl. Mech., 89, 1761-1792. https://doi.org/10.1007/s00419-019-01542-z
  50. Zenkour, A.M. and Al-Subhi, A.H. (2019), "Thermal vibrations of a graphene sheet embedded in viscoelastic medium based on nonlocal shear deformation theory", Int. J. Acous. Vib., 24(3), 485-493. https://doi.org/10.20855/ijav.2019.24.31342.