DOI QR코드

DOI QR Code

Flexural and free vibration responses of thick isotropic bridge deck using a novel two variable refined plate theory

  • Djidar, Fatima Zohra (Smart Structures Laboratory, University of Ain Temouchent, Faculty of Science & Technology, Civil Engineering Department) ;
  • Hebali, Habib (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Amara, Khaled (Engineering and Sustainable Development Laboratory, University of Ain Temouchent) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Bendaho, Boudjema (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Ghazwani, M.H. (Department of Mechanical Engineering, Faculty of Engineering, Jazan University) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
  • Received : 2021.03.25
  • Accepted : 2022.03.24
  • Published : 2022.06.25

Abstract

This work presents a simple exponential shear deformation theory for the flexural and free vibration responses of thick bridge deck. Contrary to the existing higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed model uses a new displacement field which incorporates undetermined integral terms and involves only two variables. Governing equations and boundary conditions of the theory are derived by the principle of virtual work. The simply supported thick isotropic square and rectangular plates are considered for the detailed numerical studies. Results of displacements, stresses and frequencies are compared with those of other refined theories and exact theory to show the efficiency of the proposed theory. Good agreement is achieved of the present results with those of higher order shear deformation theory (HSDT) and elasticity theory. Moreover, results demonstrate that the developed two variable refined plate theory is simple for solving the flexural and free vibration responses of thick bridge deck and can achieve the same accuracy of the existing HSDTs which have more number of variables.

Keywords

References

  1. Ambartsumyan, S.A. (1970), Theory of Anisotropic Plates, Technomic Publishing Company, Westport, CT, USA.
  2. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://doi.org/10.12989/scs.2019.30.6.603.
  3. Bert, C.W. and Chen, T.L.C. (1978), "Effect of shear deformation on vibration of antisymmetric angle ply laminated rectangular plates", Int. J. Solid. Struct., 14(6), 465-473. https://doi.org/10.1016/0020-7683(78)90011-2.
  4. Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.
  5. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  6. Ellali, M., Amara, Kh., Bouazza, M. and Bourada, F. (2018), "The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories", Smart Struct. Syst., 21(1), 113-122. https://doi.org/10.12989/sss.2018.21.1.113.
  7. Ghodrati, B., Yaghootian, A., Ghanbar Zadeh, A. and Sedighi, H.M. (2018), "Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories", Wave. Random Complex Media, 28(1), 15-34. https://doi.org/10.1080/17455030.2017.1308582.
  8. Ghugal, Y.M. and Pawar, M.D. (2011), "Buckling and vibration of plates by hyperbolic shear deformation theory", J. Aerosp. Eng. Technol., 1, 1-12.
  9. Ghugal, Y.M. and Sayyad, A.S. (2010), "Free vibration of thick orthotropic plates using trigonometric shear deformation theory", Lat. Am. J. Solid. Struct., 8, 229-243. https://doi.org/10.1590/S1679-78252011000300002
  10. Hadji, L., Hassaine Daouadji, T., Ait Amar Meziane, M., Tlidji, Y. and AddaBedia, E.A. (2016), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., 57(2), 315-325. https://doi.org/10.12989/sem.2016.57.2.315.
  11. Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Compos. Struct., 53(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X.
  12. Khatir, S., Tiachacht, S., Thanh, C.L., Bui, T.Q. and Wahab, M.A. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
  13. Khatir, S., Tiachacht, S., Thanh, C.L., Ghandourah, E. and Wahab, M.A. (2021), "An improved artificial neural network using arithmetic optimization algorithm for damage assessment in FGM composite plates", Compos. Struct., 273, 114287. https://doi.org/10.1016/j.compstruct.2021.114287.
  14. Kirchhoff, G. (1850), "Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe", Journal fur die reine und angewandte Mathematik (Crelles Journal), 1850(40), 51-88. https://doi.org/10.1515/crll.1850.40.51
  15. Kirchhoff, G.R. (1850), "Uber die Schwingungen einer kriesformigen elastischen Scheibe", Annalen der Physik und Chemie, 81, 258-264. https://doi.org/10.1002/andp.18501571005
  16. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of FGM beams", Struct. Eng. Mech., 69(4), 427-437. http://doi.org/10.12989/sem.2019.69.4.427.
  17. Mantari, J.L. and Granados, E.V. (2015), "A refined FSDT for the static analysis of functionally graded sandwich plates", Thin Wall. Struct., 90, 150-158. https://doi.org/10.1016/j.tws.2015.01.015.
  18. Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217.
  19. Mohan, P.R., Naganarayana, B.P. and Prathap, G. (1994), "Consistent and variationally correct finite elements for higher-order laminated plate theory", Compos. Struct., 29(4), 445-456. https://doi.org/10.1016/0263-8223(94)90113-9.
  20. Pagano, N.J. (1970), "Exact solutions for bidirectional composites and sandwich plates", J. Compos. Mater., 4, 20-34. https://doi.org/10.1177/002199837000400102.
  21. Pinto, V.T., Oliveira Rocha, L.A., Fragassa, C., Domingues dos Santos, E. and Isoldi, L.A. (2020), "Multiobjective geometric analysis of stiffened plates under bending through constructal design method", J. Appl. Comput. Mech., 6(SI), 1438-1449. https://doi.org/10.22055/jacm.2020.35248.2608.
  22. Reddy, J.N. (1979), "Free vibration of antisymmetric angle ply laminated plates including transverse shear deformation by the finite element method", J. Sound Vib., 66(4), 565-576. https://doi.org/10.1016/0022-460X(79)90700-4.
  23. Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", ASME J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
  24. Reddy, J.N. and Khdeir, A.A. (1989), "Buckling and vibration of laminated composite plates using various plate theories", AIAA J., 27(12), 1808-1817. https://doi.org/10.2514/3.10338.
  25. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", ASME J. Appl. Mech., 12, 69-77. https://doi.org/10.1115/1.4009435.
  26. Saadatmorad, M., Jafari-Talookolaei, R.A., Pashaei, M.H. and Khatir, S. (2021), "Damage detection on rectangular laminated composite plates using wavelet based convolutional neural network technique", Compos. Struct., 278, 114656. https://doi.org/10.1016/j.compstruct.2020.113216.
  27. Sallai, B., Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2015), "Analytical solution for bending analysis of functionally graded beam", Steel Compos. Struct., 19(4), 829-841. https://doi.org/10.12989/scs.2015.19.4.829.
  28. Sayyad, A.S. and Ghugal, Y.M. (2012), "Bending and free vibration analysis of thick isotropic plates by using exponential shear deformation theory", Appl. Comput. Mech., 6, 65-82.
  29. Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D.L.A. (2011), "Free vibration analysis of solar functionally graded plates with temperature-dependent material properties using second order shear deformation theory", J. Mech. Sci. Technol., 25(9), 2195-2209. https://doi.org/10.1007/s12206-011-0610-x.
  30. Shankara, C.A. and Iyengar, N.G. (1996), "A C0 element for the free vibration analysis of laminated composite plates", J. Sound Vib., 191(5), 721-738. https://doi.org/10.1006/jsvi.1996.0152.
  31. Srinivas, S., JogaRao, C.V. and Rao, A.K. (1970), "An exact analysis for vibration of simpply supported homogeneous and laminated thick rectangular plates", J. Sound Vib., 12, 187-199. https://doi.org/10.1016/0022-460X(70)90089-1.
  32. Sun, C.T. and Whitney, J.M. (1973), "Theories for the dynamic response of laminated plates", AIAA J., 11(2), 178-183. https://doi.org/10.2514/3.50448.
  33. Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates: Analytical solutions", Eur. J. Mech. A/Solid., 47, 349-361. https://doi.org/10.1016/j.euromechsol.2014.06.003.
  34. Ton, T.H.L. (2020), "A novel quadrilateral element for dynamic response of plate structures subjected to blast loading", J. Appl. Comput. Mech., 6, 1314-1323.
  35. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  36. Tran-Ngoc, H., Khatir, S., Ho-Khac, H., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2020), "Efficient Artificial neural networks based on a hybrid metaheuristic optimization algorithm for damage detection in laminated composite structures", Compos. Struct., 262, 113339. https://doi.org/10.1016/j.compstruct.2020.113339.
  37. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  38. Viswanathan, K.K., Javed, S. and Abdul Aziz, Z. (2013), "Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness under shear deformation theory", Struct. Eng. Mech., 45(2), 259-275. http://doi.org/10.12989/sem.2013.45.2.259.
  39. Whitney, J.M. (1969), "The effect of transverse shear deformation on the bending of laminated plates", J. Compos. Mater., 3(3), 534-547. https://doi.org/10.1177/002199836900300316.
  40. Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech.-T, ASME, 37(4), 1031-1036. https://doi.org/10.1115/1.3408654.
  41. Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on postbuckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM", Steel Compos. Struct., 17(5), 753-776. http://doi.org/10.12989/scs.2014.17.5.753.
  42. Yan, P.C., Norris, C.H. and Stavsky, Y. (1966), "Elastic wave propagation in heterogeneous plates", Int. J. Solid. Struct., 2(4), 665-684. https://doi.org/10.1016/0020-7683(66)90045-X.
  43. Zenzen, R., Khatir, S., Belaidi, I., Le Thanh, C. and Abdel Wahab, M. (2020), "A modifed transmissibility indicator and Artifcial Neural Network for damage identifcation and quantifcation in laminated composite structures", Comput. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497.
  44. Zouatnia, N. and Hadji, L. (2019), "Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory", Adv. Mater. Res., 8(4), 313-335. https://doi.org/10.12989/amr.2019.8.4.313.