Acknowledgement
This work was supported by National Natural Science Foundation of China (Grand No. 81972389 and 81770790), and Distinguished Young Scholar Project of PLA General Hospital (Grand No. 2020-JQPY-002).
References
- Abd El-Aziz, S.H., Endo, Y., Miyamaori, H., Takino, T. and Sato, H. (2007), "Cleavage of growth differentiation factor 15 (GDF15) by membrane type 1-matrix metalloproteinase abrogates GDF15-mediated suppression of tumor cell growth", Cancer Sci., 98(9), 1330-1335. https://doi.org/10.1111/j.1349-7006.2007.00547.x.
- Ahmed, D.S., Isnard, S., Lin, J., Routy, B. and Routy, J.P. (2021), "GDF15/GFRAL pathway as a metabolic signature for cachexia in patients with cancer", J. Cancer., 12(4), 1125-1132. https://doi.org/10.7150/jca.50376.
- Assadi, A., Zahabi, A. and Hart, R.A. (2020), "GDF15, an update of the physiological and pathological roles it plays: A review", Pflug. Arch. Eur, J, Phys., 472(11), 1535-1546. https://doi.org/10.1007/s00424-020-02459-1.
- Baek, S.J. and Eling, T. (2019), "Growth differentiation factor 15 (GDF15): A survival protein with therapeutic potential in metabolic diseases", Pharmacol. Ther., 198, 46-58. https://doi.org/10.1016/j.pharmthera.2019.02.008.
- Bucalo, M.L., Barbieri, C., Roca, S., Ion Titapiccolo, J., Ros Romero, M.S., Ramos, R., Albaladejo, M., Manzano, D., Mari, F. and Molina, M. (2018), "The anaemia control model: Does it help nephrologists in therapeutic decision-making in the management of anaemia?", Nefrologia, 38(5), 491-502. https://doi.org/10.1016/j.nefroe.2018.10.001.
- Buchholz, K., Antosik, P., Grzanka, D., Gagat, M., Smolinska, M., Grzanka, A., Gzil, A., Kasperska, A. and Klimaszewska-Wisniewska, A. (2021), "Expression of the body-weight signaling players: GDF15, GFRAL and RET and their clinical relevance in gastric cancer", J. Cancer, 12(15), 4698-4709. https://doi.org/10.7150/jca.55511.
- Chen, Q., Pearlman, R.E. and Moens, P.B. (1992), "Isolation and characterization of a cDNA encoding a synaptonemal complex protein", Biochem. Cell Biol., 70(10-11), 1030-1038. https://doi.org/10.1139/o92-147.
- Coll, A.P., Chen, M., Taskar, P., Rimmington, D., Patel, S., Tadross, J.A., Cimino, I., Yang, M., Welsh, P., Virtue, S., Goldspink, D.A., Miedzybrodzka, E.L., Konopka, A.R., Esponda, R.R., Huang, J.T., Tung, Y.C.L., Rodriguez-Cuenca, S., Tomaz, R.A., Harding, H.P., Melvin, A., Yeo, G.S.H., Preiss, D., Vidal-Puig, A., Vallier, L., Nair, K.S., Wareham, N.J., Ron, D., Gribble, F.M., Reimann, F., Sattar, N., Savage, D.B., Allan, B.B. and O'Rahilly, S. (2020), "GDF15 mediates the effects of metformin on body weight and energy balance", Nature, 578(7795), 444-448. https://doi.org/10.1038/s41586-019-1911-y.
- Coussens, L.M., Fingleton, B. and Matrisian, L.M. (2002), "Matrix metalloproteinase inhibitors and cancer: trials and tribulations", Science, 295(5564), 2387-2392. https://doi.org/10.1126/science.1067100.
- Day, E.A., Ford, R.J., Smith, B.K., Mohammadi-Shemirani, P., Morrow, M.R., Gutgesell, R.M., Lu, R., Raphenya, A.R., Kabiri, M., McArthur, A.G., McInnes, N., Hess, S., Pare, G., Gerstein, H.C. and Steinberg, G.R. (2019), "Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss", Nat. Metab., 1(12), 1202-1208. https://doi.org/10.1038/s42255-019-0146-4.
- Dorandish, S., Williams, A., Atali, S., Sendo, S., Price, D., Thompson, C., Guthrie, J., Heyl, D. and Evans, H.G. (2021), "Regulation of amyloid-beta levels by matrix metalloproteinase-2/9 (MMP2/9) in the media of lung cancer cells", Sci. Rep., 11(1), 9708. https://doi.org/10.1038/s41598-021-88574-0.
- Du, W., Zhang, L., Brett-Morris, A., Aguila, B., Kerner, J., Hoppel, C.L., Puchowicz, M., Serra, D., Herrero, L., Rini, B.I., Campbell, S. and Welford, S.M. (2017), "HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism", Nat. Commun., 8(1), 1769. https://doi.org/10.1038/s41467-017-01965-8.
- Egeblad, M. and Werb, Z. (2002), "New functions for the matrix metalloproteinases in cancer progression", Nat. Rev. Cancer., 2(3), 161-174. https://doi.org/10.1038/nrc745.
- Escudier, B., Porta, C., Schmidinger, M., Rioux-Leclercq, N., Bex, A., Khoo, V., Grunwald, V., Gillessen, S. and Horwich, A. (2019), "Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-updagger", Ann. Oncol., 30(5), 706-720. https://doi.org/10.1093/annonc/mdz056.
- Fields, G.B. (1991), "A model for interstitial collagen catabolism by mammalian collagenases", J. Theor. Biol., 153(4), 585-602. https://doi.org/10.1016/s0022-5193(05)80157-2.
- Fields, G.B. (2013), "Interstitial collagen catabolism", J. Biol. Chem., 288(13), 8785-8793. https://doi.org/10.1074/jbc.R113.451211.
- Griner, S.E., Joshi, J.P. and Nahta, R. (2013), "Growth differentiation factor 15 stimulates rapamycin-sensitive ovarian cancer cell growth and invasion", Biochem. Pharmacol., 85(1), 46-58. https://doi.org/10.1016/j.bcp.2012.10.007.
- Gruenwald, K., Castagnola, P., Besio, R., Dimori, M., Chen, Y., Akel, N.S., Swain, F.L., Skinner, R.A., Eyre, D.R., Gaddy, D., Suva, L.J. and Morello, R. (2014), "Sc65 is a novel endoplasmic reticulum protein that regulates bone mass homeostasis", J. Bone Miner. Res., 29(3), 666-675. https://doi.org/10.1002/jbmr.2075.
- Guo, F., Zhou, Y., Guo, H., Ren, D., Jin, X. and Wu, H. (2021), "NR5A2 transcriptional activation by BRD4 promotes pancreatic cancer progression by upregulating GDF15", Cell Death Discov., 7(1), 78. https://doi.org/10.1038/s41420-021-00462-8.
- Hao, L., Pang, K., Pang, H., Zhang, J., Zhang, Z., He, H., Zhou, R., Shi, Z. and Han, C. (2020), "Knockdown of P3H4 inhibits proliferation and invasion of bladder cancer", Aging, 12(3), 2156-2168. https://doi.org/10.18632/aging.102732.
- Huang, L.L., Wang, Z., Cao, C.J., Ke, Z.F., Wang, F., Wang, R., Luo, C.Q., Lu, X. and Wang, L.T. (2017), "AEG-1 associates with metastasis in papillary thyroid cancer through upregulation of MMP2/9", Int. J. Oncol., 51(3), 812-822. https://doi.org/10.3892/ijo.2017.4074.
- Hudson, D.M. and Eyre, D.R. (2013), "Collagen prolyl 3-hydroxylation: A major role for a minor post-translational modification?", Connect. Tissue Res., 54(4-5), 245-251. https://doi.org/10.3109/03008207.2013.800867.
- Imai, K. and Takaoka, A. (2006), "Comparing antibody and small-molecule therapies for cancer", Nat. Rev. Cancer., 6(9), 714-727. https://doi.org/10.1038/nrc1913.
- Jin, X., Zhou, H., Song, J., Cui, H., Luo, Y. and Jiang, H. (2021), "P3H4 overexpression serves as a prognostic factor in lung adenocarcinoma", Comput. Math. Methods Med., 2021, 9971353. https://doi.org/10.1155/2021/9971353.
- Jonasch, E., Walker, C.L. and Rathmell, W.K. (2021), "Clear cell renal cell carcinoma ontogeny and mechanisms of lethality", Nat. Rev. Nephrol., 17(4), 245-261. https://doi.org/10.1038/s41581-020-00359-2.
- Kessenbrock, K., Plaks, V. and Werb, Z. (2010), "Matrix metalloproteinases: Regulators of the tumor microenvironment", Cell, 141(1), 52-67. https://doi.org/10.1016/j.cell.2010.03.015.
- Lai, Y., Tang, F., Huang, Y., He, C., Chen, C., Zhao, J., Wu, W. and He, Z. (2021), "The tumour microenvironment and metabolism in renal cell carcinoma targeted or immune therapy", J. Cell Physiol., 236(3), 1616-1627. https://doi.org/10.1002/jcp.29969.
- Lee, H.J., Cho, H.E. and Park, H.J. (2021), "Germinated black soybean fermented with Lactobacillus pentosus SC65 alleviates DNFB-induced delayed-type hypersensitivity in C57BL/6N mice", J. Ethnopharmacol., 265, 113236. https://doi.org/10.1016/j.jep.2020.113236.
- Lee, Y.M., Kim, J.M., Lee, H.J., Seong, I.O. and Kim, K.H. (2019), "Immunohistochemical expression of CD44, matrix metalloproteinase2 and matrix metalloproteinase9 in renal cell carcinomas", Urol. Oncol., 37(10), 742-748. https://doi.org/10.1016/j.urolonc.2019.04.017.
- Lerner, L., Hayes, T.G., Tao, N., Krieger, B., Feng, B., Wu, Z., Nicoletti, R., Chiu, M.I., Gyuris, J. and Garcia, J.M. (2015), "Plasma growth differentiation factor 15 is associated with weight loss and mortality in cancer patients", J. Cachexia Sarcopenia Muscle, 6(4), 317-324. https://doi.org/10.1002/jcsm.12033.
- Lerner, L., Tao, J., Liu, Q., Nicoletti, R., Feng, B., Krieger, B., Mazsa, E., Siddiquee, Z., Wang, R., Huang, L., Shen, L., Lin, J., Vigano, A., Chiu, M.I., Weng, Z., Winston, W., Weiler, S. and Gyuris, J. (2016), "MAP3K11/GDF15 axis is a critical driver of cancer cachexia", J. Cachexia Sarcopenia Muscle, 7(4), 467-482. https://doi.org/10.1002/jcsm.12077.
- Li, C., Wang, J., Kong, J., Tang, J., Wu, Y., Xu, E., Zhang, H. and Lai, M. (2016), "GDF15 promotes EMT and metastasis in colorectal cancer", Oncotarget, 7(1), 860-872. https://doi.org/10.18632/oncotarget.6205.
- Li, L., Zhang, R., Yang, H., Zhang, D., Liu, J., Li, J. and Guo, B. (2020), "GDF15 knockdown suppresses cervical cancer cell migration in vitro through the TGF-beta/Smad2/3/Snail1 pathway", FEBS Open Bio, 10(12), 2750-2760. https://doi.org/10.1002/2211-5463.13013.
- Li, S., Ma, Y.M., Zheng, P.S. and Zhang, P. (2018a), "GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2", J. Exp. Clin. Cancer Res., 37(1), 80. https://doi.org/10.1186/s13046-018-0744-0.
- Li, W., Ye, L., Chen, Y. and Chen, P. (2018b), "P3H4 is correlated with clinicopathological features and prognosis in bladder cancer", World J. Surg. Oncol., 16(1), 206. https://doi.org/10.1186/s12957-018-1507-2.
- Lodi, R.S., Yu, B., Xia, L. and Liu, F. (2021), "Roles and Regulation of Growth differentiation factor-15 in the Immune and tumor microenvironment", Hum. Immunol., 82(12), 937-944. https://doi.org/10.1016/j.humimm.2021.06.007.
- Lu, X., He, X., Su, J., Wang, J., Liu, X., Xu, K., De, W., Zhang, E., Guo, R. and Shi, Y.E. (2018), "EZH2-mediated epigenetic suppression of gdf15 predicts a poor prognosis and regulates cell proliferation in non-small-cell lung cancer", Mol. Ther. Nucleic. Acids., 12, 309-318. https://doi.org/10.1016/j.omtn.2018.05.016.
- Ma, J.J., Kong, L.M., Liao, C.G., Jiang, X., Wang, Y. and Bao, T.Y. (2012), "Suppression of MMP-9 activity by NDRG2 expression inhibits clear cell renal cell carcinoma invasion", Med Oncol. 29(5), 3306-3313. https://doi.org/10.1007/s12032-012-0265-1.
- Marshall, D.C., Lyman, S.K., McCauley, S., Kovalenko, M., Spangler, R., Liu, C., Lee, M., O'Sullivan, C., Barry-Hamilton, V., Ghermazien, H., Mikels-Vigdal, A., Garcia, C.A., Jorgensen, B., Velayo, A.C., Wang, R., Adamkewicz, J.I. and Smith, V. (2015), "Selective allosteric inhibition of mmp9 is efficacious in preclinical models of ulcerative colitis and colorectal cancer", PLoS One, 10(5), e0127063. https://doi.org/10.1371/journal.pone.0127063.
- Motzer, R.J., Jonasch, E., Agarwal, N., Bhayani, S., Bro, W.P., Chang, S.S., Choueiri, T.K., Costello, B.A., Derweesh, I.H., Fishman, M., Gallagher, T.H., Gore, J.L., Hancock, S.L., Harrison, M.R., Kim, W., Kyriakopoulos, C., LaGrange, C., Lam, E.T., Lau, C., Michaelson, M.D., Olencki, T., Pierorazio, P.M., Plimack, E.R., Redman, B.G., Shuch, B., Somer, B., Sonpavde, G., Sosman, J., Dwyer, M. and Kumar, R. (2017), "Kidney cancer, version 2.2017, NCCN clinical practice guidelines in oncology", J. Natl. Compr. Cancer Netw., 15(6), 804-834. https://doi.org/10.6004/jnccn.2017.0100.
- Nakayasu, E.S., Syed, F., Tersey, S.A., Gritsenko, M.A., Mitchell, H.D., Chan, C.Y., Dirice, E., Turatsinze, J.V., Cui, Y., Kulkarni, R.N., Eizirik, D.L., Qian, W.J., Webb-Robertson, B.M., Evans-Molina, C., Mirmira, R.G. and Metz, T.O. (2020), "Comprehensive proteomics analysis of stressed human islets identifies GDF15 as a target for type 1 diabetes intervention", Cell. Metab. 31(2), 363-374 e366. https://doi.org/10.1016/j.cmet.2019.12.005.
- Ochs, R.L., Stein Jr, T.W., Chan, E.K., Ruutu, M. and Tan, E.M. (2017), "cDNA cloning and characterization of a novel nucleolar protein", Mol. Biol. Cell., 7(7), 1015-1024. https://doi.org/10.1091/mbc.7.7.1015.
- Qian, H., Li, X., Zhang, W., Ma, L., Sun, J., Tang, X., Chen, Y., Teng, L., Wang, W., Li, D., Xu, Y., Li, C. and Cao, Y. (2018), "Caspase-10, matrix metalloproteinase-9 and total laminin are correlated with the tumor malignancy of clear cell renal cell carcinoma", Oncol. Lett., 16(2), 2039-2045. https://doi.org/10.3892/ol.2018.8845.
- Roy, R., Yang, J. and Moses, M.A. (2009), "Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer", J. Clin. Oncol., 27(31), 5287-5297. https://doi.org/10.1200/JCO.2009.23.5556.
- Smith, W.M., Purvis, I.J., Bomstad, C.N., Labak, C.M., Velpula, K.K., Tsung, A.J., Regan, J.N., Venkataraman, S., Vibhakar, R. and Asuthkar, S. (2019), "Therapeutic targeting of immune checkpoints with small molecule inhibitors", Am. J. Transl. Res., 11(2), 529-541.
- Spanopoulou, A. and Gkretsi, V. (2020), "Growth differentiation factor 15 (GDF15) in cancer cell metastasis: from the cells to the patients", Clin. Exp. Metastas., 37(4), 451-464. https://doi.org/10.1007/s10585-020-10041-3.
- Suriben, R., Chen, M., Higbee, J., Oeffinger, J., Ventura, R., Li, B., Mondal, K., Gao, Z., Ayupova, D., Taskar, P., Li, D., Starck, S.R., Chen, H.H., McEntee, M., Katewa, S.D., Phung, V., Wang, M., Kekatpure, A., Lakshminarasimhan, D., White, A., Olland, A., Haldankar, R., Solloway, M.J., Hsu, J.Y., Wang, Y., Tang, J., Lindhout, D.A. and Allan, B.B. (2020), "Antibody-mediated inhibition of GDF15-GFRAL activity reverses cancer cachexia in mice", Nat Med. 26(8), 1264-1270. https://doi.org/10.1038/s41591-020-0945-x.
- Tsai, V.W.W., Husaini, Y., Sainsbury, A., Brown, D.A. and Breit, S.N. (2018), "The MIC-1/GDF15-GFRAL pathway in energy homeostasis: Implications for obesity, cachexia, and other associated diseases", Cell. Metab., 28(3), 353-368. https://doi.org/10.1016/j.cmet.2018.07.018.
- Van Doren, S.R. (2015), "Matrix metalloproteinase interactions with collagen and elastin", Matrix Biol., 44-46, 224-231. https://doi.org/10.1016/j.matbio.2015.01.005.
- Wan, B., Zeng, Q., Tang, X.Z. and Tang, Y.X. (2018), "P3H4 affects renal carcinoma through up-regulating miR-1/133a", Eur. Rev. Med. Pharmacol. Sci., 22(16), 5180-5186. https://doi.org/10.26355/eurrev_201808_15714.
- Wei, M., Liu, X., Cao, C., Yang, J., Lv, Y., Huang, J., Wang, Y. and Qin, Y. (2018), "An engineered PD-1-based and MMP-2/9-oriented fusion protein exerts potent antitumor effects against melanoma", BMB Rep., 51(11), 572-577. https://doi.org/10.5483/BMBRep.2018.51.11.076.
- Weliky, N., Leaman, D.H., Jr. and Kallman, B.J. (1975), "Stability and dissociation of P3H4-1 Burkitt's lymphoma cell soluble complement-fixing antigen identified with human serum", Cancer Res. 35(6), 1580-1585.
- Yang, C., Yu, H., Chen, R., Tao, K., Jian, L., Peng, M., Li, X., Liu, M. and Liu, S. (2019), "CXCL1 stimulates migration and invasion in ERnegative breast cancer cells via activation of the ERK/MMP2/9 signaling axis", Int. J. Oncol., 55(3), 684-696. https://doi.org/10.3892/ijo.2019.4840.
- Ye, Y., Kuang, X., Xie, Z., Liang, L., Zhang, Z., Zhang, Y., Ma, F., Gao, Q., Chang, R., Lee, H.H., Zhao, S., Su, J., Li, H., Peng, J., Chen, H., Yin, M., Peng, C., Yang, N., Wang, J., Liu, J., Liu, H., Han, L. and Chen, X. (2020), "Small-molecule MMP2/MMP9 inhibitor SB-3CT modulates tumor immune surveillance by regulating PD-L1", Genome Med. 12(1), 83. https://doi.org/10.1186/s13073-020-00780-z.
- Yue, Y.C., Yang, B.Y., Lu, J., Zhang, S.W., Liu, L., Nassar, K., Xu, X.X., Pang, X.Y. and Lv, J.P. (2020), "Metabolite secretions of Lactobacillus plantarum YYC-3 may inhibit colon cancer cell metastasis by suppressing the VEGF-MMP2/9 signaling pathway", Microb. Cell Fact., 19(1), 213. https://doi.org/10.1186/s12934-020-01466-2.
- Zhang, W., Hu, C., Wang, X., Bai, S., Cao, S., Kobelski, M., Lambert, J.R., Gu, J. and Zhan, Y. (2019), "Role of GDF15 in methylseleninic acid-mediated inhibition of cell proliferation and induction of apoptosis in prostate cancer cells", PLoS One, 14(9), e0222812. https://doi.org/10.1371/journal.pone.0222812.
- Zhao, F., Evans, K., Xiao, C., DeVito, N., Theivanthiran, B., Holtzhausen, A., Siska, P.J., Blobe, G.C. and Hanks, B.A. (2018), "Stromal fibroblasts mediate anti-PD-1 resistance via MMP-9 and dictate TGFbeta inhibitor sequencing in melanoma", Cancer Immunol. Res., 6(12), 1459-1471. https://doi.org/10.1158/2326-6066.CIR-18-0086.
- Zhou, R., Xu, L., Ye, M., Liao, M., Du, H. and Chen, H. (2014), "Formononetin inhibits migration and invasion of MDA-MB-231 and 4T1 breast cancer cells by suppressing MMP-2 and MMP-9 through PI3K/AKT signaling pathways", Horm. Metab. Res., 46(11), 753-760. https://doi.org/10.1055/s-0034-1376977.
- Zhu, H.F. and Li, Y. (2018), "Small-Molecule Targets in Tumor Immunotherapy", Nat. Prod. Bioprospect., 8(4), 297-301. https://doi.org/10.1007/s13659-018-0177-7.