DOI QR코드

DOI QR Code

Tuning of the Interparticle interactions in ultrafine ferrihydrite nanoparticles

  • Knyazev, Yuriy V. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS) ;
  • Balaev, Dmitry A. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS) ;
  • Yaroslavtsev, Roman N. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS) ;
  • Krasikov, Aleksandr A. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS) ;
  • Velikanov, Dmitry A. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS) ;
  • Mikhlin, Yuriy L. (Institute of Chemistry and Chemical Technology, Federal Research Center KSC SB RAS) ;
  • Volochaev, Mikhail N. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS) ;
  • Bayukov, Oleg A. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS) ;
  • Stolyar, Sergei V. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS) ;
  • Iskhakov, Rauf S. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS)
  • Received : 2021.11.16
  • Accepted : 2022.03.29
  • Published : 2022.06.25

Abstract

We prepared two samples of ultrafine ferrihydrite (FH) nanoparticle ensembles of quite a different origin. First is the biosynthesized sample (as a product of the vital activity of bacteria Klebsiella oxytoca (hereinafter marked as FH-bact) with a natural organic coating and negligible magnetic interparticle interactions. And the second one is the chemically synthesized ferrihydrite (hereinafter FH-chem) without any coating and high level of the interparticle interactions. The interparticle magnetic interactions have been tuned by modifying the nanoparticle surface in both samples. The coating of the FH-bact sample has been partially removed by annealing at 150℃ for 24 h (hereinafter FH-annealed). The FH-chem sample, vice versa, has been coated (1.0 g) with biocompatible polysaccharide (arabinogalactan) in an ultrasonic bath for 10 min (hereinafter FH-coated). The changes in the surface properties of nanoparticles have been controlled by XPS. According to the electron microscopy data, the modification of the nanoparticle surface does not drastically change the particle shape and size. A change in the average nanoparticle size in sample FH-annealed to 3.3 nm relative to the value in the other samples (2.6 nm) has only been observed. The estimated particle coating thickness is about 0.2-0.3 nm for samples FH-bact and FH-coated and 0.1 nm for sample FH-annealed. Mössbauer and magnetization measurements are definitely shown that the drastic change in the blocking temperature is caused by the interparticle interactions. The experimental temperature dependences of the hyperfine field hf>(T) for samples FH-bact and FH-coated have not revealed the effect of interparticle interactions. Otherwise, the interparticle interaction energy Eint estimated from the hf>(T) for samples FH-chem and FH-annealed has been found to be 121kB and 259kB, respectively.

Keywords

Acknowledgement

The electron microscopy, XPS, and Mossbauer spectroscopy studies were carried out on the equipment of the Krasnoyarsk Territorial Center for Collective Use, Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences.

References

  1. Abbasi, A.Z., Gutierrez, L., del Mercato, L.L., Herranz, F., Chubykalo-Fesenko, O., Veintemillas-Verdaguer, S., Parak, W.J., Puerto Morales, M, Gonzalez, J.M, Hernando, A and de la Presa, P. (2011), "Magnetic capsules for NMR imaging: Effect of magnetic nanoparticles spatial distribution and aggregation", J. Phys. Chem. C, 115(14), 6257-6264. https://doi.org/10.1021/jp1118234.
  2. Abdolvand, E., Farzinpour, A. and Vaziry, A. (2020), "Effects of supplementation cysteine-coated Fe3O4 nanoparticles compared to Fe3O4, on reproductive performance in male quail", Adv. Nano Res., 9(1), 15-24. https://doi.org/10.12989/anr.2020.9.1.015
  3. Almanghadim, H.G., Nourollahzadeh, Z., Khademi, N.S., Tezerjani, M.D., Sehrig, F.Z., Estelami, N., Shirvaliloo, M., Sheervalilou, R. and Sargazi, S. (2021), "Application of nanoparticles in cancer therapy with an emphasis on cell cycle", Cell Biol. Int., 45(10), 1989-1998. https://doi.org/10.1002/cbin.11658.
  4. Balaev, D.A., Krasikov, A.A., Dubrovskiy, A.A., Popkov, S.I., Stolyar, S.V., Bayukov, O.A., Iskhakov, R.S., Ladygina, V.P., Yaroslavtsev, R.N. (2016a), "Magnetic properties of heat treated bacterial ferrihydrite nanoparticles", J. Magn. Magn. Mater., 410, 171-180. https://doi.org/10.1016/j.jmmm.2016.02.059.
  5. Balaev, D.A., Krasikov, A.A., Stolyar, S.V., Iskhakov, R.S., Ladygina, V.P., Yaroslavtsev, R.N., Bayukov, O.A., Vorotynov, A.M., Volochaev, M.N. and Dubrovskiy, A.A. (2016b), "Change in the magnetic properties of nanoferrihydrite with an increase in the volume of nanoparticles during low-temperature annealing", Phys. Solid State, 58(9), 1782-1791. https://doi.org/10.1134/s1063783416090092.
  6. Balaev, D.A., Krasikov, A.A., Balaev, A.D., Stolyar, S.V., Ladygina, V.P. and Iskhakov, R.S. (2020), "Features of relaxation of the remanent magnetization of antiferromagnetic nanoparticles by the example of ferrihydrite", Phys. Solid State, 62(7), 1172-1178. https://doi.org/10.1134/s1063783420070033.
  7. Barani, M., Zeeshan, M., Kalantar-Neyestanaki, D., Farooq, M.A., Rahdar, A., Jha, N.K., Sargazi, S., Gupta, P.K. and Thakur, V. K. (2021a), "Nanomaterials in the management of gram-negative bacterial infections", Nanomaterials, 11(10), 2535. https://doi.org/10.3390/nano11102535.
  8. Barani, M., Sargazi, S., Mohammadzadeh, V., Rahdar, A., Pandey, S., Jha, N.K., Gupta, P.K. and Thakur, V.K. (2021b), "Theranostic advances of bionanomaterials against gestational diabetes mellitus: A preliminary review", J. Funct. Biomater., 12(4), 54. https://doi.org/10.3390/JFB12040054.
  9. Barani, M., Reza Hajinezhad, M., Sargazi, S., Zeeshan, M., Rahdar, A., Pandey, S., Khatami, M. and Zargari, F. (2021c), "Simulation, in vitro and in vivo cytotoxicity assessments of methotrexate-loaded ph-responsive nanocarriers", Polymers, 13(18), 3153. https://doi.org/10.3390/polym13183153.
  10. Berquo, T.S., Erbs, J.J., Lindquist, A., Penn, R.L. and Banerjee, S.K. (2009), "Effects of magnetic interactions in antiferromagnetic ferrihydrite particles", J. Phys. Condens. Mat., 21(17), 176005. https://doi.org/10.1088/0953-8984/21/17/176005.
  11. Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R. and Smart, R.S.C. (2011), "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni", Appl. Surf. Sci., 257(7), 2717-2730. https://doi.org/10.1016/j.apsusc.2010.10.051.
  12. Bishop, J.L., Pieters, C. and Burns, R.G. (1993), "Reflectance and Mossbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials", Geochim. Cosmochim. Acta, 57(19), 4583-4595. https://doi.org/10.1016/0016-7037(93)90184-x.
  13. Bodker, F., Hansen, M.F., Koch, C.B. and Morup, S. (2000), "Particle interaction effects in antiferromagnetic NiO nanoparticles"", J. Magn. Magn. Mater., 221(1-2), 32-36. https://doi.org/10.1016/S0304-8853(00)00392-9.
  14. Brinza, L., Vu, H.P., Neamtu, M. and Benning, L.G. (2019), "Experimental and simulation results of the adsorption of Mo and V onto ferrihydrite", Sci. Rep., 9(1), 1-12. https://doi.org/10.1038/s41598-018-37875-y.
  15. Chilom, C.G., Zorila, B., Bacalum, M., Balasoiu, M., Yaroslavtsev, R., Stolyar, S. V. and Tyutyunnicov S. (2020), "Ferrihydrite nanoparticles interaction with model lipid membranes", Chem. Phys. Liq., 226, 104851. https://doi.org/10.1016/j.chemphyslip.2019.104851.
  16. De la Presa, P., Luengo, Y., Multigner, M., Costo, R., Morales, M. P., Rivero, G. and Hernando, A. (2012), "Study of heating efficiency as a function of concentration, size and applied field in γ-Fe2O3 nanoparticles", J. Phys. Chem. C, 116(48), 25602-25610. https://doi.org/10.1021/jp310771p.
  17. Engel, M., Lezama Pacheco, J.S., Noel, V., Boye, K. and Fendorf, S. (2021), "Organic compounds alter the preference and rates of heavy metal adsorption on ferrihydrite", Sci. Total Environ., 750, 141485. https://doi.org/10.1016/j.scitotenv.2020.1414.
  18. Frandsen, C. and Morup, S. (2003), "Inter-particle interactions in composites of antiferromagnetic nanoparticles", J. Magn. Magn. Mater., 266(1-2), 36-48. https://doi.org/10.1016/S0304-8853(03)00453-0.
  19. Fiorani, D., Dormann, J.L., Cherkaoui, R., Tronc, E., Lucari, F., D'Orazio, F., Spinu, L., Nogues, M., Garcia, A., Testa, A. M. (1999), "Collective magnetic state in nanoparticles systems" J. Magn. Magn. Mater., 196, 143-147. https://doi.org/10.1016/s0304-8853(98)00694-5.
  20. Frandsen, C. and Morup, S. (2005), "Spin rotation in α-Fe2O3 nanoparticles by interparticle interactions", Phys. Rev. Lett., 94(2), 027202. https://doi.org/10.1103/PhysRevLett.94.027202.
  21. Groman, E.V., Menz, E.T., Enriquez, P.M., Jung, C., Lewis, J.M. and Josephson, L. (1996), "Delivery of therapeutic agents to receptors using polysaccharides", U.S. Patent No. 5,554,386; Washington, U.S.A.
  22. Grosvenor, A.P., Kobe, B.A., McIntyre, N.S., Tougaard, S. and Lennard, W.N. (2004), "Use of QUASES™/XPS measurements to determine the oxide composition and thickness on an iron substrate', Surf. Interf. Anal., 36(7), 632-639. https://doi.org/10.1002/sia.1842.
  23. Guyodo, Y., Banerjee, S.K., Penn, R.L., Burleson, D., Berquo, T.S., Seda, T. and Solheid, P. (2006), "Magnetic properties of synthetic six-line ferrihydrite nanoparticles", Phys. Earth Planet. In., 154(3-4), 222-233. https://doi.org/10.1016/j.pepi.2005.05.009.
  24. Hansen, M.F., Koch, C.B. and Morup, S. (2000), "Magnetic dynamics of weakly and strongly interacting hematite nanoparticles", Phys. Rev. B, 62(2), 1124. http://doi.org/10.1103/PhysRevB.62.1124.
  25. Hiemstra, T. (2013), "Surface and mineral structure of ferrihydrite", Geochim. Cosmochim. Acta, 105, 316-325. https://doi.org/10.1016/j.gca.2012.12.002.
  26. Hiemstra, T. (2018), "Surface structure controlling nanoparticle behavior: magnetism of ferrihydrite, magnetite and maghemite", Environ. Sci., 5, 752-764. https://doi.org/10.1039/C7EN01060E.
  27. Holsen, T.M., Taylor, E.R., Seo, Y.C. and Anderson, P.R. (1991), "Removal of sparingly soluble organic chemicals from aqueous solutions with surfactant-coated ferrihydrite", Environ. Sci. Technol., 25(9), 1585-1589. https://doi.org/10.1021/es00021a009.
  28. Hong, R.Y., Feng, B., Chen, L.L., Liu, G.H., Li, H.Z., Zheng, Y. and Wei, D.G. (2008), "Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles", Biochem. Eng. J., 42(3), 290-300. https://doi.org/10.1016/j.bej.2008.07.009.
  29. Kamble, V., Kodwani, G., Sridharkrishna, R. and Ankamwar, B. (2014), "Synthesis of anisotropic defective polyaniline/silver nanocomposites", Adv. Nano Res., 2(2), 111-119. https://doi.org/10.12989/anr.2014.2.2.111.
  30. Klingelhofer, G., Morris, R.V., Bernhardt, B., Schroder, C., Rodionov, D.S., de Souza, P.A., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gutlich, P., Ming, D.W., Renz, F., Wdowiak, T., Squyres, S.W. and Arvidson, R.E. (2004), "Jarosite and hematite at meridiani planum from opportunity's Mossbauer spectrometer", Science, 306(5702), 1740-1745. http://doi.org/10.1126/science.1104653.
  31. Knyazev, Y.V., Balaev, D.A., Stolyar, S.V., Krasikov, A.A., Bayukov, O.A., Volochaev, M.N., Yaroslavtsev, R.N., Ladygina, V.P., Velikanov, D.A. and Iskhakov, R.S. (2022), "Interparticle magnetic interactions in synthetic ferrihydrite: Mossbauer spectroscopy and magnetometry study of the dynamic and static manifestations", J. Alloy. Compd., 889, 161623. https://doi.org/10.1016/j.jallcom.2021.161623.
  32. Knyazev, Y.V., Balaev, D.A., Stolyar, S.V., Bayukov, O.A., Yaroslavtsev, R.N., Ladygina, V.P., Velikanov, D.A. and Iskhakov, R.S. (2020), "Magnetic anisotropy and core-shell structure origin of the biogenic ferrihydrite nanoparticles", J. Alloy. Compd., 851, 156753. https://doi.org/10.1016/j.jallcom.2020.156753.
  33. Kocar, B.D., Borch, T. and Fendorf, S. (2010), "Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite", Geochim. Cosmochim. Acta, 74(3), 980-994. http://doi.org/10.1016/j.gca.2009.10.023.
  34. Kolovskaya, O.S., Zamay, T.N., Zamay, G.S., Babkin, V.A., Medvedeva, E.N., Neverova, N.A., Kirichenko, A.K., Zamay, S.S., Lapin, I. N., Morozov, E.V., Sokolov, A.E., Narodov, A.A., Fedorov, D.G., Tomilin, F.N., Zabluda, V.N., Alekhina, Y.., Lukyanenko, K.A., Glazyrin, Y.E., Svetlichnyi, V.A., Berezovski, M.V. and Kichkailo, A.S. (2020), "Aptamerconjugated superparamagnetic ferroarabinogalactan nanoparticles for targeted magnetodynamic therapy of cancer", Cancers, 12(1), 216. https://doi.org/10.3390/cancers12010216.
  35. Kuhn, L.T., Lefmann, K., Bahl, C.R.H., Ancona, S.N., Lindgard, P.A., Frandsen, C., Madsen, D.E. and Morup, S. (2006), "Neutron study of magnetic excitations in8-nmα-Fe2O3 nanoparticles", Phys. Rev. B, 74(18), 184406. https://doi.org/10.1103/physrevb.74.184406.
  36. Landers, J., Stromberg, F., Darbandi, M., Schoppner, C., Keune, W. and Wende, H. (2014), "Correlation of superparamagnetic relaxation with magnetic dipole interaction in capped iron-oxide nanoparticles", J. Phys. Condens. Mat., 27(2), 026002. https://doi.org/10.1088/0953-8984/27/2/026002.
  37. Liu, H., Li, X., Wang, Y., Yang, X., Zhen, Z., Chen, R., Hou, D. and Wei, Y. (2014), "New insight into the effect of the formation environment of ferrihydrite on its structure and properties", RSC Adv., 4(22), 11451-11458. http://doi.org/10.1039/c4ra00696h.
  38. Lopez-Ruiz, R., Luis, F., Sese, J., Bartolome, J., Deranlot, C. and Petroff, F. (2010), "Zero-temperature spin-glass freezing in selforganized arrays of Co nanoparticles", Europhys. Lett., 89(6), 67011. https://doi.org/10.1209/0295-5075/89/67011.
  39. Lunin, A.V., Lizunova, A.A., Mochalova, E.N., Yakovtseva, M.N., Cherkasov, V.R., Nikitin, M.P. and Kolychev, E.L. (2020), "Hematite nanoparticles from unexpected reaction of ferrihydrite with concentrated acids for biomedical applications", Molecules, 25(8), 1984. https://doi.org/10.3390/molecules25081984.
  40. Mallet, M., Barthelemy, K., Ruby, C., Renard, A. and Naille, S. (2013), "Investigation of phosphate adsorption onto ferrihydrite by X-ray photoelectron spectroscopy", J. Colloid Interf. Sci., 407, 95-101. https//doi.org/10.1016/j.jcis.2013.06.049.
  41. Morup, S. (1987), "Mossbauer effect studies of microcrystalline materials", Mossbauer Spectroscopy Applied To Inorganic Chemistry, 2, 89-123.
  42. Morup, S. and Hansen, B.R. (2005), "Uniform magnetic excitations in nanoparticles", Phys. Rev. B, 72(2), 024418. https://doi.org/10.1103/PhysRevB.72.024418.
  43. Morup, S., Madsen, D.E., Frandsen, C., Bahl, C.R. and Hansen, M.F. (2007), "Experimental and theoretical studies of nanoparticles of antiferromagnetic materials", J. Phys. Condens. Mat., 19(21), 213202. https://doi.org/10.1088/0953-8984/19/21/213202.
  44. Morup, S., Hansen, M.F., Frandsen, C. (2010), "Magnetic interactions between nanoparticles", Beilstein J. Nanotechnol., 1, 182-190. https://doi.org/10.3762/bjnano.1.22.
  45. Papaefthymiou, G.C., Devlin, E., Simopoulos, A., Yi, D.K., Riduan, S.N., Lee, S.S. and Ying, J.Y. (2009), "Interparticle interactions in magnetic core/shell nanoarchitectures", Phys. Rev. B, 80(2), 024406. https://doi.org/10.1103/PhysRevB.80.024406.
  46. Mukhtar, M., Sargazi, S., Barani, M., Madry, H., Rahdar, A. and Cucchiarini, M. (2021), "Application of nanotechnology for sensitive detection of low-abundance single-nucleotide variations in genomic DNA: A review", Nanomaterials, 11(6), 1384. https://doi.org/10.3390/nano11061384.
  47. Papaefthymiou, G.C. (2010), "The Mossbauer and magnetic properties of ferritin cores", Biochim. Biophys. Acta, 1800(8), 886-897. https://doi.org/10.1016/j.bbagen.2010.03.018.
  48. Petrov, D., Lin, C.R., Ivantsov, R., Ovchinnikov, S.G., Zharkov, S., Yurkin, G., Velikanov, D.A., Knyazev, Y.V., Molokeev, M.S., Tseng, Y.T., Lin, E.S., Edelman, I.S., Baskakov, A.O., Starchikov, S.S. and Lyubutin, I.S. (2020), "Characterization of the iron oxide phases formed during the synthesis of core-shell FexOy@C nanoparticles modified with Ag", Nanotechnology, 31, 395703. https://doi.org/10.1088/1361-6528/ab9af2.
  49. Rahdar, A., Hajinezhad, M. R., Sargazi, S., Zaboli, M., Barani, M., Baino, F., Bilal, M. and Sanchooli, E. (2021), "Biochemical, ameliorative and cytotoxic effects of newly synthesized curcumin microemulsions: Evidence from in vitro and in vivo studies", Nanomaterials, 11(3), 817. https://doi.org/10.3390/nano11030817.
  50. Rahdar, A., Hajinezhad, M. R., Barani, M., Sargazi, S., Zaboli, M., Ghazy, E., Baino, F., Cucchiarini, M., Bilal, M. and Pandey, S. (2022), "Pluronic F127/doxorubicin microemulsions: preparation, characterization and toxicity evaluations", J. Mol. Liq., 345, 117028. https://doi.org/10.1016/j.molliq.2021.117028.
  51. Rivas Rojas, P.C., Tancredi, P., Moscoso Londono, O., Knobel, M. and Socolovsky, L.M. (2018), "Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles", J. Magn. Magn. Mat., 451, 688-696. https://doi.org/10.1016/j.jmmm.2017.11.099.
  52. Sargazi, S., Hajinezhad, M.R., Rahdar, A., Zafar, M.N., Awan, A. and Baino, F. (2021), "Assessment of SnFe2O4 nanoparticles for potential application in theranostics: Synthesis, characterization, in vitro and in vivo toxicity", Materials, 14(4), 1-19. https://doi.org/10.3390/ma14040825.
  53. Schwertmann, U., Friedl, J. and Stanjek, H. (1999), "From Fe(III) ions to ferrihydrite and then to hematite", J. Colloid Interf. Sci., 209(1), 215-223. http://doi.org/10.1006/jcis.1998.5899.
  54. Sheervalilou, R., Shirvaliloo, M., Sargazi, S., Shirvalilou, S., Shahraki, O., Pilehvar-Soltanahmadi, Y., Sarhadi, A., Nazarlou, Z., Ghaznavi, H. and Khoei, S. (2021), "Application of nanobiotechnology for early diagnosis of SARS-CoV-2 infection in the COVID-19 pandemic", Appl. Microbiol. Biotechnol., 105(7), 2615-2624. https://doi.org/10.1007/s00253-021-11197-y.
  55. Sokolov, I. L., Cherkasov, V. R., Vasilyeva, A. V., Bragina, V. A. and Nikitin, M. P. (2018), "Paramagnetic Colloidal Ferrihydrite Nanoparticles for MRI Contrasting", Colloid. Surf. A, 539, 46-52. https://doi.org/10.1016/j.colsurfa.2017.11.062
  56. Stolyar, S.V., Yaroslavtsev, R.N., Iskhakov, R.S., Bayukov, O.A., Balaev, D.A., Dubrovskii, A.A., Krasikov A.A., Ladygina, V.P., Vorotynov, A.M., Volochaev, M.N. (2017). "Magnetic and resonance properties of ferrihydrite nanoparticles doped with cobalt", Phys. Solid State, 59(3), 555-563. https://doi.org/10.1134/s1063783417030301.
  57. Stolyar, S.V., Balaev, D.A., Ladygina, V.P., Dubrovskiy, A.A., Krasikov, A.A., Popkov, S.I., Bayukov, O.A., Knyazev, Yu.V., Yaroslavtsev, R.N., Volochaev, M.N., Iskhakov, R.S., Dobretsov, K.G., Morozov, E.V., Falaleev, O.V., Inzhevatkin, E.V., Kolenchukova, O.A. and Chizhova, I.A. (2018), "Bacterial ferrihydrite nanoparticles: preparation, magnetic properties and application in medicine", J. Supercond. Nov. Magn., 31, 2297. https://doi.org/10.1007/s10948-018-4700-1.
  58. Stolyar, S.V., Kolenchukova, O.A., Boldyreva, A.V., Kudryasheva, N.S., Gerasimova, Y.V., Krasikov, A.A., Yaroslavtsev, R.N., Bayukov, O.A., Ladygina, V.P., Birukova, E.A. (2021a), "Biogenic ferrihydrite nanoparticles: Synthesis, properties in vitro and in vivo testing and the concentration effect", Biomedicines, 9(3), 323. https://doi.org/10.3390/biomedicines9030323.
  59. Stolyar, S.V., Kryukova, O.V., Yaroslavtsev, R.N., Bayukov, O.A., Knyazev, Y.V., Gerasimova, Y.V., Pyankov, V.F., Latyshev, N.V. and Shestakov, N.P. (2021b), "Influence of magnetic nanoparticles on cells of Ehrlich ascites carcinoma", AIP Adv., 11(1), 015019. https://doi.org/10.1063/9.0000165.
  60. Supraja, N., Tollamadugu, N.V.K.V.P. and Adam, S. (2016), "Phytogenic silver nanoparticles (Alstonia scholaris) incorporated with epoxy coating on PVC materials and their biofilm degradation studies", Adv. Nano Res., 4(4), 281. https://doi.org/10.12989/anr.2016.4.4.281
  61. Velikanov, D.A. (2013), "Squid magnetometer for investigations of the magnetic properties of materials in the temperature range 4.2-370 K", Sib. J. Sci. Technol., 2(48), 176.
  62. Wabler, M., Zhu, W., Hedayati, M., Attaluri, A., Zhou, H., Mihalic, J., Geyh, A., DeWeese, T.L., Ivkov, R. and Artemov, D. (2014), "Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content", Int. J. Hyperther., 30(3), 192-200. https://doi.org/10.3109/02656736.2014.913321.
  63. Weidler, P.G. and Stanjek, H. (1998), "The effect of dry heating of synthetic 2-line and 6-line ferrihydrite: II. Surface area, porosity and fractal dimension", Clay Miner., 33(2), 277-284. https://doi.org/10.1180/000985598545471.
  64. Wickman, H.H., Klein, M.P. and Shirley, D.A. (1966), "Paramagnetic hyperfine structure and relaxation effects in mossbauer spectra: Fe57 in ferrichrome", Phys. Rev., 152(1), 345. https://doi.org/10.1103/PhysRev.152.345.
  65. Xu, W., Hausner, D.B., Harrington, R., Lee, P.L., Strongin, D.R. and Parise, J.B. (2011), "Structural water in ferrihydrite and constraints this provides on possible structure models", Am. Mineralogist, 96(4), 513-520. https://doi.org/10.2138/am.2011.3460.
  66. Yakushkin, S.S., Balaev, D.A., Dubrovskiy, A.A., Semenov, S.V., Knyazev, Y.V., Bayukov, O.A., Kirillov, V.L., Ivantsov, R.D., Edelman, I.S. and Martyanov, O.N. (2018), "ε-Fe2O3 nanoparticles embedded in silica xerogel - Magnetic metamaterial", Ceram. Int., 44(15), 17852-17857. https://doi.org/10.1016/j.ceramint.2018.06.254.
  67. Yamada H. (2000), Bioactive Arabinogalactan-Proteins and Related Pectic Polysaccharides in Sino-Japanese Herbal Medicines, in: Cell and Developmental Biology of Arabinogalactan-Proteins, Springer, Boston, U.S.A. https://doi.org/10.1007/978-1-4615-4207-0_19.
  68. Yang, Y., Tian, Q., Wu, S., Li, Y., Yang, K., Yan, Y., Shang, L., Li, A., Zhang, L. (2021), "Blue light-triggered Fe2+-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy", Biomaterials, 271, 120739. https://doi.org/10.1016/j.biomaterials.2021.1.
  69. Yusoff, A.H., Salimi, M.N. and Jamlos, M.F. (2018), "A review: Synthetic strategy control of magnetite nanoparticles production", Adv. Nano Res., 6(1), 1-19. https://doi.org/10.12989/anr.2018.6.1.001.
  70. Zhao, J., Huggins, F.E., Feng, Z. and Huffman, G.P. (1996), "Surface-induced superparamagnetic relaxation in nanoscale ferrihydrite particles", Phys. Rev. B, 54(5), 3403-3407. https://doi.org/10.1103/physrevb.54.3403.