DOI QR코드

DOI QR Code

Essential oil impregnation into graphene sponges with electric desorption control

  • Received : 2021.08.06
  • Accepted : 2022.04.12
  • Published : 2022.06.25

Abstract

This work shows the impregnation of scents using a graphene sponge (GS). This was functionalized by the modified Hummers method, pursuing to add different functional groups. It is proposed to achieve the release and seek to control it through electrical potential applied to the graphene sponge with essential oils. The graphene sponge was functionalized and steeped with two kinds of oil. The electrochemical study demonstrates the variation in the electrochemical behaviour of the functionalized graphene sponge without and impregnated with oil. The release of the oil and its aromatic scents was carried out by applying an electrical potential of 30 V, with a release rate of 1.86 mg/min. The heating of the sample that causes the release of oil, associated with the electrical resistance of the system, reaches temperatures of about 150℃. The essential oils, graphene sponge, surfactant, graphene sponge with essential oils, graphene sponge recuperated after applying electric potential, graphene sponge recovered by temperature and dipropylene glycol (DPG) were characterized using Fourier transformed infrared spectroscopy (FTIR), digital microscopy, and x-ray photoelectron spectroscopy (XPS).

Keywords

Acknowledgement

This research was funded by the National Council of Science and Technology (CONACYT) grant number 207450 through the Mexican Center of Innovation in Solar Energy CEMIE-Sol P18 and the National Laboratory of Graphene Materials through the project No. 293371. Thank you to The World Bank and the Secretary of Energy for their support through the PRODETES 2016 Prize Project, No. 002/2017-PRODETES-PLATA. Also, the first co-author thanks the CONACYT for the scholarship for Master studies. The authors sincerely thank Raul Rodriguez Montano, CIO at EPAF Monarca, for his valuable contribution to preparing the essential oils.

References

  1. Ali, M., Meaney, S.P., Abedin, M.J., Holt, P., Majumder, M. and Tabor, R.F. (2019), "Graphene oxide-silica hybrid capsules for sustained fragrance release", J. Colloid. Interface Sci., 552, 528-539. https://doi.org/10.1016/J.JCIS.2019.05.061.
  2. Anand, K.B., Mohanapriya, K., Datar, S.D. and Jha, N. (2020), "Solar reduced graphene oxide coated sponge for oil and organic solvent adsorption studies", IOP Conf. Ser. Mater. Sci. Eng., 872(1), 012123. https://doi.org/10.1088/1757-899X/872/1/012123.
  3. Andreadelis, I., Chatziathanasiadou, M.V., Ntountaniotis, D., Valsami, G., Papaemmanouil, C., Christodoulou, E., Mitropoulou, G., Kourkoutas, Y., Tzakos, A.G. and Mavromoustakos, T. (2020), "Charting the structural and thermodynamic determinants in phenolic acid natural productcyclodextrin encapsulations", J. Biomol. Struct. Dyn., in press. https://doi.org/10.1080/07391102.2020.1751716.
  4. Bar, A., Diamantis, I. and Venetz, W.P. (2020), "Alpha-cyclodextrin attenuates the glycemic and insulinemic impact of white bread in healthy male volunteers", Foods, 9(1), 62. https://doi.org/10.3390/foods9010062.
  5. Chabot, V., Higgins, D., Yu, A., Xia, X., Chen, Z. and Zhang, J. (2014), "A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment", Energy Environ. Sci., 7, 1564-1596. https://doi.org/10.1039/c3ee43385d.
  6. Ebrahimi, F., Nouraei, M., Dabbagh, A. Rabczuk, T. (2019), "Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates", Adv. Nano Res., 7(5), 293-310. http://doi.org/10.12989/anr.2019.7.5.293.
  7. Ebrahimi, S. (2017), "The influence of the radius of curvature on water desalination across the nanoporous penta-graphene", Membr. Water Treat., 8(6), 553-562. http://doi.org/10.12989/mwt.2017.8.6.553.
  8. El-Gendy, D.M., Abdel Ghany, N.A. and Allam, N.K. (2019a), "Synergistic effect of silver and adenine on boosting the supercapacitance performance of spongy graphene", J. Energy Storage, 24, 100776. https://doi.org/10.1016/j.est.2019.100776.
  9. El-Gendy, D.M., Afifi, I.M. and Allam, N.K. (2019b), "Eco-friendly, one-step synthesis of cobalt sulfide-decorated functionalized graphene for high-performance supercapacitors", J. Energy Storage, 24, 100760. https://doi.org/10.1016/j.est.2019.100760.
  10. Fan, Z., Wang, D., Yuan, Y., Wang, Y., Cheng, Z., Liu, Y. and Xie, Z. (2020), "A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding", Chem. Eng. J., 381, 122696. https://doi.org/10.1016/j.cej.2019.122696.
  11. Feicht, P., Biskupek, J., Gorelik, T.E., Renner, J., Halbig, C.E., Maranska, M., Puchtler, F., Kaiser, U. and Eigler, S. (2019), "Brodie's or hummers' method: Oxidation conditions determine the structure of graphene oxide", Chem. A Eur. J., 25, 8955-8959. https://doi.org/10.1002/chem.201901499.
  12. Feng, Z.Q., Wu, F., Jin, L., Wang, T., Dong, W. and Zheng, J. (2019), "Graphene Nanofibrous Foam Designed as an Efficient Oil Absorbent", Ind. Eng. Chem. Res., 58, 3000-3008. https://doi.org/10.1021/acs.iecr.8b05646.
  13. Goncalves, F., Ribeiro, A., Silva, C. and Cavaco-Paulo, A. (2019), "Release of fragrances from cotton functionalized with carbohydrate-binding module proteins", ACS Appl. Mater. Interf., 11, 28499-28506. https://doi.org/10.1021/acsami.9b08191.
  14. Hadji, E.M., Fu, B., Abebe, A., Bilal, H.M., Wang, J. (2020), "Sponge-based materials for oil spill cleanups: A review", Front. Chem. Sci. Eng., 14(5), 749-762. https://doi.org/10.1007/s11705-019-1890-4.
  15. Ishiguro, T., Sakata, Y., Arima, H., Iohara, D., Anraku, M., Uekama, K. and Hirayama, F. (2018), "Release control of fragrances by complexation with β-cyclodextrin and its derivatives", J. Incl. Phenom. Macrocycl. Chem., 92, 147-155. https://doi.org/10.1007/s10847-018-0825-x.
  16. Ishiguro, T., Sakata, Y., Arima, H., Iohara, D., Anraku, M., Uekama, K. and Hirayama, F. (2019), "The use of enteric capsules for releasing a fragrance over an extended period of time", Chem. Pharm. Bull., 67, 493-497. https://doi.org/10.1248/cpb.c18-00898.
  17. Jaimes, N., Salmen, S., Colmenares, M.C., Burgos, A.E., Tamayo, L., Mendoza, R.V. and Cantor, A. (2016), "Cytotoxic effect of palladium (II) inclusion compounds in beta-cyclodextrin", Biomedica, 36(4), 603-611. https://doi.org/10.7705/biomedica.v36i4.2880.
  18. Joy, J., Abraham, J., Sunny, J., Mathew, J. and George, S.C. (2020), "Hydrophobic, superabsorbing materials from reduced graphene oxide/MoS2 polyurethane foam as a promising sorbent for oil and organic solvents", Polym. Test., 87, 106429. https://doi.org/10.1016/j.polymertesting.2020.106429.
  19. Kizil, S. and Bulbul Sonmez, H. (2017), "Oil loving hydrophobic gels made from glycerol propoxylate: Efficient and reusable sorbents for oil spill clean-up", J. Environ. Manage., 196, 330-339. https://doi.org/10.1016/j.jenvman.2017.02.016.
  20. Kizil, S. and Bulbul Sonmez, H. (2020), "One-pot fabrication of reusable hybrid sorbents for quick removal of oils from wastewater", J. Environ. Manage., 261, 109911. https://doi.org/10.1016/j.jenvman.2019.109911.
  21. Kovtun, A., Campodoni, E., Favaretto, L., Zambianchi, M., Salatino, A., Amalfitano, S., Navacchia, M.L., Casentini, B., Palermo, V., Sandri, M. and Melucci, M. (2020), "Multifunctional graphene oxide/biopolymer composite aerogels for microcontaminants removal from drinking water", Chemosphere, 259, 127501. https://doi.org/10.1016/j.chemosphere.2020.127501.
  22. Kumar, D. and Srivastava, A. (2016), "Elastic properties of CNT- and graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., 21(5), 1085-1103. http://dx.doi.org/10.12989/scs.2016.21.5.1085.
  23. Liu, Y., Liu, K., Zhao, M., Wang, S., Zhou, Z., Shen, Y. and Jiang, L. (2018), "A pH-responsive fragrance release system based on pseudopeptide polymeric micelles", React. Funct. Polym., 132, 138-144. https://doi.org/10.1016/j.reactfunctpolym.2018.09.021
  24. Liu, Y., Wang, Y., Huang, J., Zhou, Z., Zhao, D., Jiang, L. and Shen, Y. (2019), "Encapsulation and controlled release of fragrances from functionalized porous metal-organic frameworks", AIChE J., 65, 491-499. https://doi.org/10.1002/aic.16461.
  25. Ma, J., Xiong, Y., Dai, X. and Yu, F. (2020), "Coadsorption behavior and mechanism of ciprofloxacin and Cu(II) on graphene hydrogel wetted surface", Chem. Eng. J., 380, 122387. https://doi.org/10.1016/j.cej.2019.122387.
  26. Mohamed, M.A., El-Gendy, D.M., Ahmed, N., Banks, C.E. and Allam, N.K. (2018), "3D spongy graphene-modified screenprinted sensors for the voltammetric determination of the narcotic drug codeine", Biosens. Bioelectron., 101, 90-95. https://doi.org/10.1016/j.bios.2017.10.020.
  27. Mohammad, M.R., Abdul Hussien, A.M., Ghanim, R.R. (2019), "Synthesis of graphene oxide using simplified hummer's method for antibacterial application", IOP Conf. Ser. Mater. Sci. Eng., 518, 062012. https://doi.org/10.1088/1757-899X/518/6/062012.
  28. Moradi-Dastjerdi, R. and Behdinan, K. (2019), "Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene", Steel Compos. Struct., 31(5), 529-539. http://doi.org/10.12989/scs.2019.31.5.529.
  29. Nyssanbayeva, G.R., Kudaibergenov, K.K., Sassykova, L.R., Kerimkulova, A.R., Mansurov, Z.A. and Berkutbayeva, R.A. (2020), "Sorbents based on rice husk and graphite: Synthesis, characterization and determination of their sorption capacity in the oil-water system", J. Chem. Technol. Metall., 55(5), 1034-1040.
  30. Panahi, S., Moghaddam, M.K. and Moezzi, M. (2020), "Assessment of milkweed floss as a natural hollow oleophilic fibrous sorbent for oil spill cleanup", J. Environ. Manage., 268, 110688. https://doi.org/10.1016/j.jenvman.2020.110688.
  31. Paulo, F. and Santos, L. (2017), "Design of experiments for microencapsulation applications: A review", Mater. Sci. Eng. C, 77, 1327-1340. https://doi.org/10.1016/J.MSEC.2017.03.219.
  32. Poor, M., Faisal, Z., Zand, A., Bencsik, T., Lemli, B., Kunsagi-Mate, S. and Szente, L. (2018), "Removal of zearalenone and zearalenols from aqueous solutions using insoluble beta-cyclodextrin bead polymer", Toxins, 10(6), 216. https://doi.org/10.3390/toxins10060216.
  33. Ramirez-Gonzalez, D., Cruz-Rivera, J.J., Tiznado, H., Rodriguez, A.G., Guillen-Escamilla, I. and Zamudio-Ojeda, A. (2020), "Caffeine as a source for nitrogen doped graphene, and its functionalization with silver nanowires in-situ", Adv. Nano Res., 9(1), 25-32. http://doi.org/10.12989/anr.2020.9.1.025.
  34. Rattana, S., Chaiyakun, N., Witit-anun, N., Nuntawong, P., Chindaudom, S., Oaew, C., Kedkeaw, C. and Limsuwan, P. (2012), "Preparation and characterization of graphene oxide nanosheets", Proc. Eng., 32, 759-764. https://doi.org/10.1016/j.proeng.2012.02.009.
  35. Rodriguez-Perez, M., Villanueva-Cab, J. and Pal, U. (2017), "Evaluation of thermally and chemically reduced graphene oxide films as counter electrodes on dye-sensitized solar cells", Adv. Nano Res., 5(3), 231-244. http://doi.org/10.12989/anr.2017.5.3.231.
  36. Sharkawy, A., Fernandes, I.P., Barreiro, M.F., Rodrigues, A.E. and Shoeib, T. (2017), "Aroma-loaded microcapsules with antibacterial activity for eco-friendly textile application: Synthesis, characterization, release, and green grafting", Ind. Eng. Chem. Res., 56, 5516-5526. https://doi.org/10.1021/acs.iecr.7b00741.
  37. Shin, Y., Han, K.S., Arey, B.W., Bonheyo, G.T. and Bonheyo, G.T. (2020), "Cotton fiber-based sorbents for treating crude oil spills", ACS Omega, 5(23), 13894-13901. https://doi.org/10.1021/acsomega.0c01290.
  38. Solis, R.R., Mena, I.F., Nadagouda, M.N. and Dionysiou, D.D. (2020), "Adsorptive interaction of peroxymonosulfate with graphene and catalytic assessment via non-radical pathway for the removal of aqueous pharmaceuticals", J. Hazard. Mater., 384, 121340. https://doi.org/10.1016/j.jhazmat.2019.121340.
  39. Suganthi, K.S., Anusha, N. and Rajan, K.S. (2013), "Low viscous ZnO-propylene glycol nanofluid: a potential coolant candidate", J. Nanopart. Res., 15(1986). https://doi.org/10.1007/s11051-013-1986-6.
  40. Sun, Y., Chen, L., Yu, J., Yoon, B., Lee, S.K., Nam, J.D., Ci, L. and Suhr, J. (2020a), "Lightweight graphene oxide-based sponges with high compressibility and durability for dye adsorption", Carbon, 160, 54-63. https://doi.org/10.1016/j.carbon.2020.01.009.
  41. Sun, Y., Zhou, T., Li, W., Yu, F. and Ma, J. (2020b), "Amino-functionalized alginate/graphene double-network hydrogel beads for emerging contaminant removal from aqueous solution", Chemosphere, 241, 125110. https://doi.org/10.1016/j.chemosphere.2019.125110.
  42. Tayeb, A.M., Farouq, R., Mohamed, O.A. and Tony, M.A. (2020), "Oil spill clean-up using combined sorbents: A comparative investigation and design aspects", Int. J. Environ. Anal. Chem., 100(3), 311-323. https://doi.org/10.1080/03067319.2019.1636976.
  43. Thakkar, S.V., Pinna, A., Carbonaro, C.M., Malfatti, L., Guardia, P., Cabot, A. and Casula, M.F. (2020), "Performance of oil sorbents based on reduced graphene oxide-silica composite aerogels", J. Environ. Chem. Eng., 8(1), 103632. https://doi.org/10.1016/j.jece.2019.103632.
  44. Thompson, L., Fu, L., Wang, J. and Yu, A. (2018), "Impact of graphene oxide on dye absorption in composite hydrogels", Fuller. Nanotub. Carb. N., 26(10), 649-653. https://doi.org/10.1080/1536383x.2018.1458715
  45. Wang, L., Liu, C.Y., Huang, Q.M., An, Y., Fan, J. and Liu, Y. (2019), "A polyamide 6-organic montmorillonite composite sponge by large-scale solution foaming as a reusable and efficient oil and organic pollutant sorbent", Soft Matter, 15(44), 9066-9075. https://doi.org/10.1039/c9sm01444f.
  46. Xiao, W., Wang, N., Niu, B., Fu, C., Zhou, L. and Zheng, Y. (2019), "Polyether sulfone assisted shape construction of Calotropis gigantea fiber for preparing a sustainable and reusable oil sorbent", Cellulose, 26(6), 3923-3933. https://doi.org/10.1007/s10570-019-02356-6.
  47. Xiao, Z., Deng, J., Niu, Y., Zhu, G., Zhu, J., Liu, M. and Liu, S. (2019), "Preparation of sustained-release fragrance based on the cavity structure of β-cyclodextrin and its application in cotton fabric", Text. Res. J., 89, 3466-3474. https://doi.org/10.1177/0040517518813647.
  48. Yao, N., Li, C., Yu, J., Xu, Q., Wei, S., Tian, Z., Yang, Z., Yang,W. and Shen, J. (2020), "Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water", Sep. Purif. Technol., 236, 116278. https://doi.org/10.1016/j.seppur.2019.116278.
  49. Yoo, M.J. and Park, H.B. (2019), "Effect of hydrogen peroxide on properties of graphene oxide in Hummers method", Carbon, 141, 515-522. https://doi.org/10.1016/j.carbon.2018.10.009.
  50. Zaaba, N.I., Foo, K.L., Hashim, U., Tan, S.J., Liu, W.W. and Voon, C.H. (2017), "Synthesis of graphene oxide using modified hummers method: Solvent influence", Procedia Eng., 184, 469-477. https://doi.org/10.1016/j.proeng.2017.04.118.
  51. Zhang, Z., Liu, H. and Qiao, W. (2020), "Reduced graphene-based superhydrophobic sponges modified by hexadecyltrimethoxysilane for oil adsorption", Colloids Surf. A, 589, 124433. https://doi.org/10.1016/j.colsurfa.2020.124433.
  52. Zhou, J., Ke, Y., Barba, F.J., Xiao, S., Hu, X., Qin, X., Ding, W., Lyu, Q., Wang, X. and Liu, G. (2019Aa, "The addition of α-cyclodextrin and γ-cyclodextrin affect quality of dough and prebaked bread during frozen storage", Foods, 8(5), 8050174. https://doi.org/10.3390/foods8050174.
  53. Zhou, J., Yang, H., Qin, X., Hu, X., Liu, G. and Wang, X. (2019b), "Effect of β-cyclodextrin on the quality of wheat flour dough and prebaked bread", Food Biophys., 14(2), https://doi.org/173-181. 10.1007/s11483-019-09566-2.